DOI QR코드

DOI QR Code

Design of power and phase feedback control system for ion cyclotron resonance heating in the Experimental Advanced Superconducting Tokamak

  • L.N. Liu (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • W.M. Zheng (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • X.J. Zhang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • H. Yang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • S. Yuan (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Y.Z. Mao (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • W. Zhang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • G.H. Zhu (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • L. Wang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • C.M. Qin (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Y.P. Zhao (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Y. Cheng (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • K. Zhang (Institute of Plasma Physics, Chinese Academy of Sciences)
  • 투고 : 2023.02.23
  • 심사 : 2023.09.18
  • 발행 : 2024.01.25

초록

Ion cyclotron range of frequency (ICRF) heating system is an important auxiliary heating method in the experimental Advanced Superconducting Tokamak (EAST). In EAST, several megawatts of power are transmitted with coaxial transmission lines and coupled to the plasma. For the long pulse and high power operation of the ICRF waves heating system, it is very important to effectively control the power and initial phase of the ICRF signals. In this paper, a power and phase feedback control system is described based on field programmable gate array (FPGA) devices, which can realize complicated algorithms with the advantages of fast running and high reliability. The transmitted power and antenna phase are measured by a power and phase detector and digitized. The power and phase feedback control algorithms is designed to achieve the target power and antenna phase. The power feedback control system was tested on a dummy load and during plasma experiments. Test results confirm that the feedback control system can precisely control ICRF power and antenna phase and is robust during plasma variations.

키워드

과제정보

The authors would like to thank the technical staff of the EAST group at the Institute of Plasma Physics for their helpful support during this work. This work was supported by the Development Program of China under Grant Nos. 2019YFE03070000, 2019YFE03070003 and 2022YFE03190200, and the National Natural Science Foundation of China under Grant Nos. 12105184, 11975265, 12175273, and the Comprehensive Research Facility for Fusion Technology Program of China under Contract No. 2018-000052-73-01001228, and the Foundation of Institute of Plasma Physics, Chinese Academy of Sciences under Grant No. Y35ETY130E.

참고문헌

  1. J. Cheng, G. Liu, G. Chen, Y.P. Zhao, X. Deng, Y.Z. Mao, L.N. Liu, Design and control of coaxial switching system for ion cyclotron wave resonance heating system of EAST, Plasma Sci. Technol. 22 (4) (2020) 045603. 
  2. J.H. Li, Q.X. Yang, Y.T. Song, C. Yu, S.L. Chen, H. Xu, D. Du, RF wave propagation simulation for ICRF antenna in EAST, J. Nucl. Sci. Technol. 58 (7) (2021) 837-844.  https://doi.org/10.1080/00223131.2021.1879689
  3. L. Liu, Z. Xinjun, C. Qin, Z. Yanping, S. Yuan, Y. Mao, J. Wang, High-frequency B-dot probes used to detect characteristics of ion cyclotron range of frequency waves in EAST, J. Plasma Phys. 85 (2019) 905850214. 
  4. G. Urbanczyk, X.J. Zhang, L. Zhang, L. Colas, R. Dumont, W. Tierens, E. Lerche, D. Van Eester, S. Heuraux, X.D. Yang, Metallic impurity content behavior during ICRH-heated L-mode discharges in EAST, Nucl. Fusion 60 (12) (2020) 126003. 
  5. X. Zhang, Main experimental results and challenges in ICRF heating on EAST, 2260 (2020) 030004. 
  6. H. Yang, X.J. Zhang, Y.P. Zhao, C.M. Qin, V.S. Chan, S. Yuan, Y.Z. Mao, L.Q. Hu, G. Chen, Y. Cheng, Q.X. Yang, J.H. Wang, Y.Q. Yang, Wave coupling simulation of ICRF antenna in EAST relying on the perfectly matched layer technique, Phys. Plasmas 25 (12) (2018). 
  7. X.J. Zhang, L.N. Liu, C.M. Qin, Y. Lin, R. Ochoukov, Y.P. Zhao, N. Jean-Marie, S. Wukitchk, X.Z. Gong, B.N. Wan, Y.T. Song, S. Yuan, H. Yang, Y.Z. Mao, Y. Cheng, L. Wang, X. Deng, G. Chen, S.Q. Ju, K. Zhang, L.L. Ping, Experimental observation of enhanced plasma potential due to unabsorbed fast wave on EAST, Nucl. Fusion 59 (4) (2019). 
  8. X.J. Zhang, H. Yang, C.M. Qin, S. Yuan, Y.P. Zhao, Y.S. Wang, L.N. Liu, Y.Z. Mao, Y. Cheng, X.Z. Gong, G.S. Xu, Y.T. Song, J.G. Li, B.N. Wan, K. Zhang, B. Zhang, L. Ai, G.X. Wang, Y.Y. Guo, First experimental results with new ICRF antenna in EAST, Nucl. Fusion 62 (8) (2022) 086038. 
  9. Y.P. Zhao, X.J. Zhang, Y.Z. Mao, S. Yuan, D.Y. Xue, X. Deng, L. Wang, S.Q. Ju, Y. Cheng, C.M. Qin, G. Chen, Y. Lin, J.G. Li, B.N. Wan, Y.T. Song, F. Braun, R. Kumazawa, S. Wukitch, EAST ion cyclotron resonance heating system for long pulse operation, Fusion Eng. Des. 89 (11) (2014) 2642-2646.  https://doi.org/10.1016/j.fusengdes.2014.06.017
  10. L.N. Liu, L. Wang, S. Yuan, Y.Z. Mao, K. Saito, X.J. Zhang, C.M. Qin, Q.C. Liang, X.Y. Long, Y.P. Zhao, Y. Cheng, W. Zhang, H. Yang, G.H. Zhu, K. Zhang, L.L. Ping, L. Ai, Y.Y. Guo, G.X. Wang, W.M. Zheng, X. Gao, X.D. Lin, M.Q. Wu, Impedance matching system using triple liquid stub tuners for high-power ion cyclotron resonance heating in EAST tokamak, Rev. Sci. Instrum. 93 (4) (2022) 043506. 
  11. L.N. Liu, L. Wang, S. Yuan, Y.Z. Mao, K. Saito, X.J. Zhang, C.M. Qin, Impedance matching system using triple liquid stub tuners for high-power ion cyclotron resonance heating in EAST tokamak, Rev. Sci. Instrum. 93 (4) (2022) 043506. 
  12. L.N. Liu, Q.C. Liang, H. Yang, X.J. Zhang, S. Yuan, Y.Z. Mao, W. Zhang, G.H. Zhu, L. Wang, C.M. Qin, Y.P. Zhao, Y. Cheng, K. Zhang, Measurement of the ICRH antenna phasing using antenna strap probe based diagnostic system in EAST tokamak, Nucl. Eng. Technol. 54 (10) (2022) 3614-3619.  https://doi.org/10.1016/j.net.2022.05.030
  13. E. Lerche, V. Bobkov, P. Jacquet, M.L. Mayoral, A. Messiaen, I. Monakhov, J. Ongena, G. Telesca, D. Van Eester, R.R. Weynants, J.-E. Contributors, Recent experiments on alternative dipole phasing with the JET A2 ICRF antennas, Radio Frequency Power Plasmas 1187 (2009) 93-96. 
  14. A. Messiaen, J.M. Beuken, L. Dekeyser, T. Delvigne, P. Descamps, F. Durodie, M. Gaigneaux, M. Jadoui, R. Koch, D. Lebeau, J. Ongena, X.M. Shen, P.E. Vandenplas, R. Vannieuwenhove, G. Vanoost, G. Vanwassenhove, R.R. Weynants, T. Banno, G. Bertschinger, P. Bogen, Y. Cao, H. Conrads, K.H. Dippel, H.G. Esser, K.H. Finken, G. Fuchs, B. Giesen, E. Graffmann, H. Hartwig, E. Hintz, F. Hoenen, K. Hoethker, B. Kardon, L. Koenen, M. Korten, Y.T. Lie, P. V, A. Pospieszczyk, D. Rusbueldt, U. Samm, J. Schlueter, B. Schweer, H. Soltwisch, F. Waelbroeck, G. Waidmann, P. Wienhold, J. Winter, G.H. Wolf, R.W. Conn, W.J. Corbett, D.M. Goebel, Effect of antenna phasing and wall conditioning on Icrh in textor, Plasma Phys. Control. Fusion 31 (6) (1989) 921-939.  https://doi.org/10.1088/0741-3335/31/6/004
  15. D. Du, X.Y. Gong, H.P. Hu, B.Q. Liu, Q.H. Huang, X.Q. Lu, The effect of a poloidal phase difference on the asymmetry of the coupling characteristics of an ICRH antenna, Contrib. Plasma Phys. 51 (8) (2011) 754-759.  https://doi.org/10.1002/ctpp.201000048
  16. R. Kumazawa, T. Seki, T. Mutoh, K. Saito, H. Kasahara, G. Nomura, F. Shimpo, Y. Zhao, J.G. Kwak, L.E. Grp, Experiments using ICRF heating antenna with toroidal phase control capability on LHD, in: Radio Frequency Power in Plasmas: Proceedings of the 19th Topical Conference, Vol. 1406, 2011, pp. 269-272. 
  17. A. Messiaen, D. Swain, J. Ongena, M. Vervier, Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum, 1689, 2015, 070011. 
  18. See https://www.minicircuits.com/pdfs/PAS-3+.pdf for more information about PAS-3+. 
  19. S.M.S. Trimberger, Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology, Proc. IEEE 103 (3) (2015) 318-331.  https://doi.org/10.1109/JPROC.2015.2392104
  20. O. Bureneva, S. Mironov, Fast FPGA-based multipliers by constant for digital signal processing systems, Electronics 12 (3) (2023) 197022. 
  21. B. Popa, D. Selisteanu, I.M. Popescu, Real-time parallel processing of vibration signals using fpga technology, Intell. Syst. Appl., 1 542 (2023) 236-257. 
  22. D. Singh, R. Chandel, FPGA-based hardware-accelerated design of linear prediction analysis for real-time speech signal, Arab. J. Sci. Eng. 357 (2023) 257-261.