DOI QR코드

DOI QR Code

Radiation-hardened-by-design preamplifier with binary weighted current source for radiation detector

  • Minuk Seung (Korea Atomic Energy Research Institute (KAERI)) ;
  • Jong-Gyun Choi (Korea Atomic Energy Research Institute (KAERI)) ;
  • Woo-young Choi (College of Electrical and Electronic Engineering, Yonsei University) ;
  • Inyong Kwon (Department of Radiological Science, Yonsei University)
  • 투고 : 2023.06.18
  • 심사 : 2023.09.15
  • 발행 : 2024.01.25

초록

This paper presents a radiation-hardened-by-design preamplifier that utilizes a self-compensation technique with a charge-sensitive amplifier (CSA) and replica for total ionizing dose (TID) effects. The CSA consists of an operational amplifier (OPAMP) with a 6-bit binary weighted current source (BWCS) and feedback network. The replica circuit is utilized to compensate for the TID effects of the CSA. Two comparators can detect the operating point of the replica OPAMP and generate appropriate signals to control the switches of the BWCS. The proposed preamplifier was fabricated using a general-purpose complementary metal-oxide-silicon field effect transistor 0.18 ㎛ process and verified through a test up to 230 kGy (SiO2) at a rate of 10.46 kGy (SiO2)/h. The code of the BWCS control circuit varied with the total radiation dose. During the verification test, the initial value of the digital code was 39, and a final value of 30 was observed. Furthermore, the preamplifier output exhibited a maximum variation error of 2.39%, while the maximum rise-time error was 1.96%. A minimum signal-to-noise ratio of 49.64 dB was measured.

키워드

과제정보

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (RS-2022-00144419 and 2022M3F3A2A01072851).

참고문헌

  1. M. Jeong, G. Kim, Development of charge sensitive amplifiers based on various circuit board substrates and evaluation of radiation hardness characteristics, Nucl. Eng. Technol. 52 (7) (2020) 1503-1510. https://doi.org/10.1016/j.net.2019.12.008
  2. M. Massarotto, A. Carlosena, A.J. Lopez-Martin, Two-stage differential charge and transresistance amplifiers, IEEE Trans. Instrum. Meas. 57 (2) (2008) 309-320. https://doi.org/10.1109/TIM.2007.909498
  3. C. Lee, G. Cho, T. Unruh, S. Hur, I. Kwon, Integrated circuit design for radiation-hardened charge-sensitive amplifier survived up to 2 Mrad, Sensors 20 (10) (2020).
  4. H. Jeon, I. Kwon, M. Je, Radiation-hardened sensor interface circuit for monitoring severe accidents in nuclear power plants, IEEE Trans. Nucl. Sci. 67 (7) (2020) 1738-1745. https://doi.org/10.1109/TNS.2020.3002421
  5. G. Langfelder, A. Caspani, A. Tocchio, Design criteria of low-power oscillators for consumer-grade MEMS resonant sensors, IEEE Trans. Ind. Electron. 61 (1) (2014) 567-574. https://doi.org/10.1109/TIE.2013.2247233
  6. B. George, Z. Tan, S. Nihtianov, Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces, IEEE Trans. Ind. Electron. 64 (12) (2017) 9595-9607. https://doi.org/10.1109/TIE.2017.2726982
  7. J. Kim, Y.B. Kim, D.-Y. Seok, S.Y. Lee, J.Y. Sim, H.R. Choi, Performance enhancement of capacitive-type torque sensor by using resonant circuit, IEEE Trans. Ind. Electron. 69 (1) (2022) 560-569. https://doi.org/10.1109/TIE.2021.3055185
  8. I. Kwon, T. Kang, B.T. Wells, L.J. D'Aries, M.D. Hammig, Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 220-225. https://doi.org/10.1016/j.nima.2014.12.049
  9. I. Kwon, T. Kang, M.D. Hammig, Experimental validation of charge-sensitive amplifier configuration that compensates for detector capacitance, IEEE Trans. Nucl. Sci. 63 (2) (2016) 1202-1208. https://doi.org/10.1109/TNS.2016.2530065
  10. G.F. Knoll, Radiation Detection and Measurement, WILEY, New Jersey, 2010.
  11. T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (8) (2017) 1589-1599. https://doi.org/10.1016/j.net.2017.09.002
  12. C. Sharma, P. Rajesh, R.P. Behera, S. Amirthapandian, Impact of gamma radiation on 8051 microcontroller performance, Nucl. Eng. Technol. 54 (12) (2022) 4422-4430. https://doi.org/10.1016/j.net.2022.08.021
  13. H.J. Barnaby, Total-ionizing-dose effects in modern CMOS technologies, IEEE Trans. Nucl. Sci. 53 (6) (2006) 3103-3121. https://doi.org/10.1109/TNS.2006.885952
  14. J.D. Cressler, Extreme Environment Electronics, CRC press, Florida, 2013.
  15. W. Yang, Y. Li, G. Guo, C. He, L. Wu, System-on-chip single event effect hardening design and validation using proton irradiation, Nucl. Eng. Technol. 55 (3) (2023) 1015-1020. https://doi.org/10.1016/j.net.2022.10.034
  16. V. Gromov, A.J. Annema, R. Kluit, J.L. Visschers, P. Timmer, A radiation hard bandgap reference circuit in a standard 0.13 ㎛ CMOS technology, IEEE Trans. Nucl. Sci. 54 (6) (2007) 2727-2733. https://doi.org/10.1109/TNS.2007.910170
  17. B.M. McCue, et al., A Wide Temperature, Radiation Tolerant, CMOS-compatible precision voltage referencefor extreme radiation environment Instrumentation Systems, IEEE Trans. Nucl. Sci. 60 (3) (2013) 2272-2279. https://doi.org/10.1109/TNS.2013.2257850
  18. V. Re, M. Manghisoni, L. Ratti, V. Speziali, G. Traversi, Total ionizing dose effects on the noise performances of a 0.13 ㎛ CMOS technology, IEEE Trans. Nucl. Sci. 53 (3) (2006) 1599-1606. https://doi.org/10.1109/TNS.2006.871802
  19. M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi, A. Candelori, Comparison of ionizing radiation effects in 0.18 and 0.25 ㎛ CMOS technologies for analog applications, IEEE Trans. Nucl. Sci. 50 (6) (2003) 1827-1833. https://doi.org/10.1109/TNS.2003.820767
  20. D.M. Colombo, A. Rosseto, G.I. Wirth, S. Bampi, O.L. Goncalez, Total dose effects on voltage references in 130-nm CMOS technology, IEEE Trans. Device Mater. Reliab. 18 (1) (2018) 27-36. https://doi.org/10.1109/TDMR.2017.2787906
  21. J.D. Cressler, H.A. Mantooth, Environments and prediction tools, in: Extreme Environment Electronics, first ed., CRC Press, Boca Raton, Florida, USA, 2013.
  22. IAEA TECDOC Series, Assessment of equipment capability to perform reliability under severe accident conditions, IAEA-TECDOC-1818. Available: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1818_web.pdf.
  23. W.J. Snoeys, T.A.P. Gutierrez, G. Anelli, A new NMOS layout structure for radiation tolerance, IEEE Trans. Nucl. Sci. 49 (4) (2002) 1829-1833.  https://doi.org/10.1109/TNS.2002.801534
  24. T. Vergine, M. De Matteis, S. Michelis, G. Traversi, F. De Canio, A. Baschirotto, A 65 nm rad-hard bandgap voltage reference for LHC environment, IEEE Trans. Nucl. Sci. 63 (3) (2016) 1762-1767. https://doi.org/10.1109/TNS.2016.2550581
  25. R.W. Blaine, et al., Single-event-hardened cmos operational amplifier design, IEEE Trans. Nucl. Sci. 59 (4) (2012) 803-810. https://doi.org/10.1109/TNS.2012.2200502
  26. Atkinson, et al., RHBD technique for single-event charge cancellation in folded-cascode amplifiers, IEEE Trans. Nucl. Sci. 60 (4) (2013) 2756-2761. https://doi.org/10.1109/TNS.2013.2240316
  27. H. Xu, et al., A 78.5-dB SNDR radiation- and metastability-tolerant two-step split SAR ADC operating up to 75 MS/s with 24.9-mW power consumption in 65-nm CMOS, IEEE J. Solid State Circ. 54 (2) (2019) 441-451. https://doi.org/10.1109/JSSC.2018.2879942
  28. K.J. Shetler, et al., Radiation hardening of voltage references using chopper stabilization, IEEE Trans. Nucl. Sci. 62 (6) (2015) 3064-3071. https://doi.org/10.1109/TNS.2015.2499171
  29. M. Seung, W. Choi, S. Hur, I. Kwon, Cold junction compensation technique of thermocouple thermometer using radiation-hardened-by-design voltage reference for harsh radiation environment, IEEE Trans. Instrum. Meas. 71 (2022) 1-7.
  30. M. Manghisoni, L. Ratti, V. Speziali, Submicron CMOS technologies for low-noise analog front-end circuits, IEEE Trans. Nucl. Sci. 49 (4) (2022) 1783-1790.  https://doi.org/10.1109/TNS.2002.801540