DOI QR코드

DOI QR Code

고체 산화물 CO2-H2O 공전해 기반 합성가스 생산 기술

Syngas Production Based on Co-electrolysis of CO2 and H2O in Solid Oxide Electrolysis Cell

  • 전남기 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 이상혁 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 김상국 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 안치규 (포스코홀딩스 미래기술연구원 수소저탄소연구소) ;
  • 안진수 (포스코홀딩스 미래기술연구원 수소저탄소연구소)
  • NAMGI JEON (Hydrogen & Low-Carbon R&D Lab., POSCO N.EX.T Hub) ;
  • SANGHYEOK LEE (Hydrogen & Low-Carbon R&D Lab., POSCO N.EX.T Hub) ;
  • SANGKUK KIM (Hydrogen & Low-Carbon R&D Lab., POSCO N.EX.T Hub) ;
  • CHIKYU AHN (Hydrogen & Low-Carbon R&D Lab., POSCO N.EX.T Hub) ;
  • JIN SOO AHN (Hydrogen & Low-Carbon R&D Lab., POSCO N.EX.T Hub)
  • 투고 : 2024.01.31
  • 심사 : 2024.04.11
  • 발행 : 2024.04.30

초록

High temperature co-electrolysis of H2O-CO2 mixtures using solid oxide cells has attracted attention as promising CO2 utilization technology for production of syngas (H2/CO), feedstock for E-fuel synthesis. For direct supply to E-fuel production such as hydrocarbon and methanol, the outlet gas ratio (H2/CO/CO2) of co-electrolysis should be controlled. In this work, current voltage characteristic test and product gas analysis were carried out under various reaction conditions which could attain proper syngas ratio.

키워드

과제정보

본 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구이다(20203030030020, 고체산화물 연료전지 분리판용 특수강 신소재 및 양산기술 개발).

참고문헌

  1. J. Kim, Y. Yoo, M. Seo, J. Baek, and S. Kim, "Performance analysis of adiabatic reactor in thermochemical carbon dioxide methanation process for carbon neutral methane production", Journal of Hydrogen and New Energy, Vol. 34, No. 3, 2023, pp. 316-326, doi: https://doi.org/10.7316/JHNE.2023.34.3.316. 
  2. D. Han and Y. Baek, "A study on the synthesis of CH44 from CO2 of biogas using 40 wt% Ni-Mg catalyst: characteristic comparison of commercial catalyst and 40 wt% Ni catalyst", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 388-400, doi: https://doi.org/10.7316/KHNES.2021.32.5.388. 
  3. S. W. Kim, H. Kim, K. J. Yoon, J. H. Lee, B. K. Kim, W. Choi, J. H. Lee, and J. Hong, "Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production", Journal of Power Sources, Vol. 280, 2015, pp. 630-639, doi: https://doi.org/10.1016/j.jpowsour.2015.01.083. 
  4. M. Marchese, E. Giglio, M. Santarelli, and A. Lanzini, "Energy performance of power-to-liquid applications integrating biogas upgrading, reverse water gas shift, solid oxide electrolysis and Fischer-Tropsch technologies", Energy Conversion and Management: X, Vol. 6, 2020, pp. 100041, doi: https://doi.org/10.1016/j.ecmx.2020.100041. 
  5. C. Zhang, K. W. Jun, G. Kwak, Y. J. Lee, and H. G. Park, "Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam-mixed reforming and methanol synthesis", Journal of CO2 Utilization, Vol. 16, 2016, pp. 1-7, doi: https://doi.org/10.1016/j.jcou.2016.05.005. 
  6. H. Mahmoudi, M. Mahmoudi, O. Doustdar, H. Jahangiri, A. Tsolakis, S. Gu, and M. LechWyszynski, "A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation", Biofuels Engineering, Vol. 2, No. 1, 2017, pp. 11-31, doi: https://doi.org/10.1515/bfuel2017-0002. 
  7. S. Storsaeter, D. Chen, and A. Holmen, "Microkinetic modelling of the formation of C1 and C2 products in the Fischer-Tropsch synthesis over cobalt catalysts", Surface Science, Vol. 600, No. 10, 2006, pp. 2051-2063, doi: https://doi.org/10.1016/j.susc.2006.02.048.