• 제목/요약/키워드: Solid oxide electrolysis cell

검색결과 18건 처리시간 0.025초

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.

이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구 (Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell)

  • 권영진;김동연;배중면
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

평판형 고체산화물 연료전지의 양방향 수전해 특성 연구 (Study on Reversible Electrolysis Characteristic of a Planar Type SOFC)

  • 최영재;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.657-662
    • /
    • 2017
  • This paper presents the reversible electrolysis characteristics of a solid oxide fuel cell (SOFC) using a $10{\times}10cm^2$ anode supported planar cell with an active area of $81cm^2$. In this work, current-voltage characteristic test and reversible electrolysis cycle test were carried out sequentially for 2,114 hours at a furnace temperature of $700^{\circ}C$. The current-voltage characteristics for reversible electrolysis mode was measured at a current of ${\pm}26.7A$ under various $H_2O$ utilization conditions. The reversible electrolysis cycle was performed 50 times at a current of ${\pm}32.4A$. As a result, The performance degradation of SOEC mode was larger than that of SOFC mode.

원자력 이용 고체산화물 고온전기분해 수소 및 합성가스 생산시스템의 열역학적 효율 분석 연구 (A Study on Thermodynamic Efficiency for HTSE Hydrogen and Synthesis Gas Production System using Nuclear Plant)

  • 윤덕주;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.416-423
    • /
    • 2009
  • High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.

고체 산화물 CO2-H2O 공전해 기반 합성가스 생산 기술 (Syngas Production Based on Co-electrolysis of CO2 and H2O in Solid Oxide Electrolysis Cell )

  • 전남기;이상혁;김상국;안치규;안진수
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.140-145
    • /
    • 2024
  • High temperature co-electrolysis of H2O-CO2 mixtures using solid oxide cells has attracted attention as promising CO2 utilization technology for production of syngas (H2/CO), feedstock for E-fuel synthesis. For direct supply to E-fuel production such as hydrocarbon and methanol, the outlet gas ratio (H2/CO/CO2) of co-electrolysis should be controlled. In this work, current voltage characteristic test and product gas analysis were carried out under various reaction conditions which could attain proper syngas ratio.

고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링 (A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC))

  • 한경호;정정열;윤도영
    • 에너지공학
    • /
    • 제29권2호
    • /
    • pp.1-9
    • /
    • 2020
  • 최근 탄화수소를 에너지원으로 사용하는 엔진을 대체할 동력원으로 연료 전지가 주목을 받게 되면서 수소 생산 기술에 대한 연구가 활발하게 진행되고 있다. 수소를 생산하는 다양한 방법 중에 고체 산화물 수전해 시스템(SOEC)은 수소를 생산하기 위한 기초적이고, 친환경적인 방법이다. 고체 산화물 수전해 시스템은 고온, 고압 조건에서 운전이 가능하여 낮은 에너지 수요와 높은 열효율을 지니기 때문에 실험적인 연구가 활발하게 진행되고 있다. 하지만 실험적인 연구 성과에 비해 수치모델 연구는 비교적 부진하다. 이에 대한 원인으로 기존의 수치모델이 온도와 압력의 변화에 따른 성능 예측의 유효성이 상당히 낮기 때문으로 판단하였다. 이에 본 연구에서는 고체 산화물 수전해 시스템의 셀 성능 예측의 유효성을 높일 수 있는 방안을 제시하기 위해서 Patterened Ni-YSZ cermet electrode(40 wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3)로 구성된 상용 막-극 접합체의 기존의 연구 데이터를 활용하였다. 온도에 따른 전기화학적 특성의 영향을 수치적으로 분석한 결과, 유효성에 가장 큰 편차를 가져오는 변수들은 charge transfer coefficient(CTC), exchange current density, diffusion coefficient, electrical conductivity인 것으로 나타났다. 온도와 압력에 따른 해당 변수들의 영향 및 경향성을 분석하여 과전압 모델을 제시하였다. 다양한 모델의 적용과 타당성을 확보하기 위해서 교차-검증이 도입되었다. 그 결과, 체계화된 유효성 검증 과정에 기초한 고체 산화물 수전해 시스템의 수치 모델은 뛰어난 성능의 예측 결과를 보여주었다.

Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가 (Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production)

  • 최미화;최진혁;이태희;유영성;고재화
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계 (Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation)

  • 잡반티엔;이영덕;김영상;쿠엔;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.