DOI QR코드

DOI QR Code

극저온 냉각 챔버 내 냉각 메커니즘 연구

Study on the Cooling Mechanism in a Cryogenic Cooling System

  • 이성우 (경상국립대학교 기계시스템공학과) ;
  • 나영상 (한국재료연구원 극한소재연구소 특수합금연구실) ;
  • 김영균 (한국재료연구원 극한소재연구소 특수합금연구실) ;
  • 전승민 (한국재료연구원 극한소재연구소 특수합금연구실) ;
  • 이준호 (한국재료연구원 극한소재연구소 특수합금연구실) ;
  • 최성웅 (경상국립대학교 기계시스템공학과)
  • SEONGWOO LEE (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • YOUNGSANG NA (Department of Special Alloys, Extreme Materials Institute, Korea Institute of Materials Science) ;
  • YOUNGKYUN KIM (Department of Special Alloys, Extreme Materials Institute, Korea Institute of Materials Science) ;
  • SEUNGMIN JEON (Department of Special Alloys, Extreme Materials Institute, Korea Institute of Materials Science) ;
  • JUNHO LEE (Department of Special Alloys, Extreme Materials Institute, Korea Institute of Materials Science) ;
  • SUNGWOONG CHOI (Department of Mechanical System Engineering, Gyeongsang National University)
  • 투고 : 2024.02.19
  • 심사 : 2024.04.17
  • 발행 : 2024.04.30

초록

The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 2022730000005A).

참고문헌

  1. J. O'. M. Bockris, "The hydrogen economy: its history", International Journal of Hydrogen Energy, Vol. 38, No. 6, 2013, pp. 2579-2588, doi: https://doi.org/10.1016/j.ijhydene.2012.12.026. 
  2. S. Sharma and S. K. Ghoshal, "Hydrogen the future transportation fuel: from production to applications", Renewable and Sustainable Energy Reviews, Vol. 43, 2015, pp. 1151-11 58, doi: https://doi.org/10.1016/j.rser.2014.11.093. 
  3. S. Z. S. Al Ghafri, S. Munro, U. Cardella, T. Funke, W. Notardonato, J. P. M. Trusler, J. Leachman, R. Span, S. Kamiya, G. Pearce, A. Swanger, E. D. Rodriguez, P. Bajada, F. Jiao, K. Peng, A. Siahvashi, M. L. Johns, and E. F. May, "Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities", Energy & Environmental Science, Vol. 15, No. 7, 2022, pp. 2690-2731, doi: https://doi.org/10.1039/D2EE00099G. 
  4. Z. Chen, Z. Ma, J. Zheng, X. Li, E. Akiba, and H. W. Li, "Perspectives and challenges of hydrogen storage in solid-state hydrides", Chinese Journal of Chemical Engineering, Vol. 2 9, 2021, pp. 1-12, doi: https://doi.org/10.1016/j.cjche.2020.08.024. 
  5. K. Sasaki, H. W. Li, A. Hayashi, J. Yamabe, T. Ogura, and S. M. Lyth, "Hydrogen Energy Engineering: a Japanese perspective", Springer, Germany, 2016. 
  6. C. K. Woo. "Technical guide for materials of containment system for hydrogen fuels for ships." Journal of Advanced Marine Engineering and Technology, Vol. 46, No. 5, 2022, pp. 212-217, doi: https://doi.org/10.5916/jamet.2022.46.5.212. 
  7. B. Kim, and K. I. Hwang. "Numerical validation of a hydrogen leakage and dispersion experiment considering ship kinetic characteristics." Journal of Advanced Marine Engineering and Technology, Vol. 47, No. 6, 2023,pp. 352-359, doi: https://doi.org/10.5916/jamet.2023.47.6.352. 
  8. X. Guo, X. Xie, J. Ren, M. Laktionova, E. Tabachnikova, L. Yu, W. S. Cheung, K. A. Dahmen, and P. K. Liaw, "Plastic dynamics of the Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state", Applied Physics Letters, Vol. 111, No. 25, 2017, pp. 251905, doi: https://doi.org/10.1063/1.5004241. 
  9. J. Tabin, B. Skoczen, and J. Bielski, "Discontinuous plastic flow in stainless steels subjected to combined loads at extremely low temperatures", International Journal of Mechanical Sciences, Vol. 200, 2021, pp. 106448, doi: https://doi.org/10.1016/j.ijmecsci.2021.106448. 
  10. Z. Pu, Z. C. Xie, R. Sarmah, Y. Chen, C. Lu, G. Anathakrishna, and L. H. Dai, "Spatio-temporal dynamics of jerky flow in high-entropy alloy at extremely low temperature", Philosophical Magazine, Vol. 101, No. 2, 2021, pp. 154-178, doi: https://doi.org/10.1080/14786435.2020.1822557. 
  11. J. Moon, E. Tabachnikova, S. Shumilin, T. Hryhorova, Y. Estrin, J. Brechtl, P. K. Liaw, W. Wang, K. A. Dahmen, and H. S. Kim, "Unraveling the discontinuous plastic flow of a CoCr-Fe-Ni-Mo multiprincipal-element alloy at deep cryogenic temperatures", Physical Review Materials, Vol. 5, No. 8, 2021, pp. 083601, doi: https://doi.org/10.1103/PhysRevMaterials.5.083601. 
  12. R. M. McClintock and H. P. Gibbons, "Mechanical properti es of structural materials at low temperature", Korea Research Institute of Standards and Science, 1987. 
  13. Y. H. Cho, J. Y. Yoon, S. W. Kang, S. S. Kim, J. H. Kim, S. J. Kim, Y. C. Yoon, S. G. Jeong, and H. J. Chae, "Study on Administration of New Technology Convergency Type Growth Engine Project", Ministry of Science, ICT and Future Planning, 2017. Retrieved from https://scienceon.kisti.re.kr/commons/util/originalView.do?dbt=TRKO&cn=TRKO201800003646. 
  14. R. S. Kern, C. Svanberg, K. Fransson, K. Gajewski, L. Hermansson, H. Li, T. Lofnes, M. Olvegard, I. Profatilova, M. Zhovner, A. Miyazaki, and R. Ruber, "Completion of Testing series double-spoke cavity cryomodules for ESS", In: The 21 st International Conference on Radio-Frequency Supercon ductivity; 2023 Jun 25-30; Michigan. Ithaca: arXiv, 2023, pp. 2306.11333, doi: https://doi.org/10.48550/arXiv.2306.11333. 
  15. A. E. Salomonovich, T. M. Sidyakina, A. S. Khaikin, V. N. Bakun, A. A. Nikonov, V. A. Maslakov, E. I. Klimenko, and V. N. Kurkin, "Space helium refrigerator", Cryogenics, Vol. 21, No. 8, 1981, pp. 474-478, doi: https://doi.org/10.1016/0011-2275(81)90069-2. 
  16. C. Wang, G. Thummes, and C. Heiden, "A two-stage pulse tube cooler operating below 4 K", Cryogenics, Vol. 37, No. 3, 1997, pp. 159-164, doi: https://doi.org/10.1016/S0011-2275(96)00112-9. 
  17. J. Frolec, J. Vonka, P. Hanzelka, T. Kralik, V. Musilova, and P. Urban, "Design and testing of low temperature part of an UHV SPM microscope", In: The 13th Cryogenics 2014 IIR International Conference; 2014 Apr 7-11; Prague. Ithaca: arXiv, 2016, pp. 1610.00433, doi: https://doi.org/10.48550/arXiv.1610.00433.