• Title/Summary/Keyword: 고로슬래그 미분말

Search Result 409, Processing Time 0.023 seconds

Strength and Durability Properties of Concretes Using Ground Granulated Blast-Furnace Slag According to Steam Curing Types (고로(高爐)슬래그 미분말(微分末)을 사용한 콘크리트의 증기양생(蒸氣養生)에 따른 강도(强度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jang, Ho-Sung;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.52-59
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of ground granulated blast-furnace slag on strength development and durability of ordinary portland cement concrete (OPC) with steam curing types. Main experimental variables were slag contents(0%, 10%, 30%, 50%, 70%) and curing types (standard, accelerated curing). It were performed to check the basic properties of concretes that compressive strength, rapid chloride ion permeability and chemical resistance. From the result, we have found that increasing the amount of blast-furnace slag produced concrete with increased compressive strength and permeability resistance. Rapid freezing-thawing test showed that they were good enough to protect the concrete structures and to carry out cyclic freezing and thawing. The freeze-thaw resistance of blast-furnace slag produced concretes maintained above 90% of relative dynamic modulus after 300 freezing-thawing cycles. Increasing the amount of blast-furnace slag produced concretes with increased chemical resistance.

The Microstructure and Durable Properties of the Composites with the Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 몰탈의 미세구조와 내구특성)

  • Kim, Won-Ki;Soh, Jung-Sub;Kim, Dong-In;Kim, Hoon-Sang;Kim, Hong-Joo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.143-148
    • /
    • 2004
  • 고로슬래그 미분말과 플라이 애쉬와 같은 재료들이 콘크리트의 내구성과 장기강도 증진을 목적으로 혼합재로서 사용되고 있다. 본 연구에서는 고로슬래그 사용 몰탈의 내구성 증진 특성을 활용하기 위하여 고로슬래그 미분말에 알칼리 자극제를 첨가한 알칼리 활성화 슬래그계 무기결합재 사용 몰탈의 내구성과 물리적 특성을 평가하였다. 실험결과, 몰탈의 초기 압축강도 발현에 알칼리 자극제가 큰 영향을 미치는 것을 확인하였다. 또한 알칼리 자극제가 첨가된 몰탈의 화학적 저항성을 평가하기 위하여 공시체를 재령 28 일 후, 5% 황산($H_2SO_4$) 용액에 침지하여 압축강도 및 질량 변화를 관찰하였다. 그 결과, 보통포틀랜드 시멘트로 제조한 몰탈의 경우, 황산용액 침지 후 압축강도가 54% 감소하였다. 반면 고로슬래그 미분말을 첨가한 몰탈의 경우, 약 10% 강도가 감소하였다. 질량변화의 경우, 보통포틀랜드 시멘트로 제조한 공시체는 17%, 고로슬래그 미분말을 첨가한 몰탈은 3%의 질량변화를 보였다. 이 결과로서 고로슬래그 미분말을 첨가한 몰탈의 경우, 화학적 저항성과 물리적 특성이 우수한 것을 확인하였다.

  • PDF

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder (페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구)

  • Kim, Young-Uk;Kim, Do-Bin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.551-558
    • /
    • 2018
  • This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Study of Fundamental Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 기초물성(基礎物性) 연구(硏究))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Kim, Kyeong-Jin
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.10-17
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of blast-furnace slag on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 10%, 15%) and slag contents (0%, 30%). The compressive and flexural strengths, chloride-ion rapid permeability and chemical attacks resistance were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive and flexural strength of BS-LMC increased as the slag contents increased from 0% to 30% at the long term of curing. It considers blast furnace slag used when latex content was up to 10%. The permeability resistance of BS-LMC(latex 10%, blast 30%) was extremely good at the curing time 90 days. Also. the effects of added blast furnace slag on OPC and LMC were increased on the permeability and chemical attacks resistance.

Effects of the Reaction Degree of Ground Granulated Blast Furnace Slag on the Properties of Cement Paste (고로슬래그 미분말의 반응도가 시멘트 페이스트의 물성에 미치는 영향에 관한 연구)

  • Kim, Dong-Yeon;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.723-730
    • /
    • 2014
  • The usage of Ground Granulated Blast Furnance Slag (GGBFS) has been increased recently. Studies on the cement hydration model incorporating GGBFS as well as the properties of cement paste done with GGBFS such as compressive strength, hydration products and hydration heat have been the subjects of many researches. However, studies on the reaction degree of GGBFS that affect the properties of cement paste incorporating GGBFS are lacking globally and specially in Korea. Thus, in this study, the reaction degree of GGBFS using the method if selective dissolution, compressive strength, the amount of chemical bound water and $Ca(OH)_2$ were measured and analysed in accordance with water-binder ratio, replacement ratio of GGBFS, and curing temperature. The results show that the reaction degree of GGBFS, the amount of chemical bound water and $Ca(OH)_2$ in cement paste with GGBFS were higher in conditions where the replacement ratio of GGBFS was low and both water-binder ratio and curing temperature were high. Finally, the reaction degree of GGBFS was achieved at a value between 0.3~0.4.

A Study on Freezing and Trawing Resistance of Concrete with the Ratio of Ground Granulated Blast-Furnace Slag Replacement (고로슬로그 미분말의 치환율에 따른 콘크리트의 동결융해 저항성에 관한 연구)

  • 최세규;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.149-155
    • /
    • 1997
  • 고로슬래그 미분말을 사용한 콘크리트\ulcorner 수화속도가 느려 어린 재령시 동해의 영향을받기 쉽다. 본 연구에서는 고로슬래그 미분말을 사용한 콘크리트의 동결융해 저항성을 알아보기 위해 고로슬래그 미분말의 치환율과 물-결합재비를 변화시켜 제조한 콘크리트에 대해 동결융해시험을 실시하였다. 또한 동일한 치환율, 물-결합재비의 콘크리트에 AE제를 첨가시켜 동결융해 저항성의 개선효과를 알아보았다. 시험결과 고로슬래그 미분말의 치환율이 증가할수록 동결융해 저항성은 작게 나왔다. 또한 non-AE 콘크리트의 경우 물-결합재비가 51%, 45%일 때 내구성지수는 각각 2.4%, 40.0%이하로 매우 나쁘게 나타났으나, AE콘크리트의 경우 물 -결합재비가 45%와 51%인 콘크리트의 내구성지수는 각각 90.2% 80.9%이상으로 동결융해 저항성이 매우 우수하게 나타났다.

Effect of Addition of Ground Granulated Blast-furnace Slag on Strength Properties of Autoclaved Polymer-Modified Concrete (오토클레이브 양생 폴리머 시멘트 콘크리트의 강도성상에 미치는 고로슬래그 미분말 혼입의 영향)

  • 주명기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.608-614
    • /
    • 2002
  • The effects of slag content and polymer-binder ratio on the strength properties of autoclaved SBR-modified concretes using ground granulated blast-furnace slag(slag) and a styrene-butadiene rubber (SBR) latex are examined. As a result, the compressive and tensile strengths of the autoclaved SBR-modified concretes using slag increase with increasing slag content, and reach a maximum at a slag content 40%, and increase with increasing polymer-binder ratio. In particular, the autoclaved SBR-modified concretes with a slag content of 40% provide about three times higher tensile strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of SBR polymer and the improved bond between cement hydrates and aggregates because of the addition of SBR latex.

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.