Acknowledgement
이 연구는 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)
References
- Ukaogo, P. O., Ewuzie, U. and Onwuka, C., "21 - Environmental pollution: Causes, effects, and the remedies", Microorganisms for Sustainable Environment and Health, pp. 419~429. (2020).
- Evode, N., Qamar, S. A., Bilal, M., Barcelo, D. and Iqbal, H. M. N., "Plastic waste and its management strategies for environmental sustainability", Case Stud. Chem. Environ. Eng., 4, p. 100142. (2021).
- Arikan, E., Simsit-Kalender, Z. T. and Vayvay, O., "Solid waste disposal methodology selection using multi-criteria decision making methods and an application in Turkey", J. Clean. Prod., 142(20), pp. 403~412. (2017). https://doi.org/10.1016/j.jclepro.2015.10.054
- Hwang, K.-L., Choi, S.-M., Kim, M.-K., Heo, J.-B. and Zoh, K.-D., "Emission of greenhouse gases from waste incineration in Korea", J. Environ. Manag., 196(1), pp. 710~718. (2017). https://doi.org/10.1016/j.jenvman.2017.03.071
- Jassim, A. K., "Recycling of polyethylene waste to produce plastic cement", Procedia Manuf., 8, pp. 635~642. (2017). https://doi.org/10.1016/j.promfg.2017.02.081
- Dogu, O., Pelucchi, M., Vijver, R. V., Van Steenberge, V. P. M., D'hooge, D. R., Cuoci, A., Mehl, M., Frassoldati, A., Faravelli, T. and Van Geem, K. M., "The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions", Prog. Energy Combust. Sci., 84, p. 100901. (2021).
- Eriksen, M. K., Christiansen, J. D., Daugaard, A. E. and Astrup T. F., "Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling", J. Waste Manag., 96(1), pp. 75~85. (2019). https://doi.org/10.1016/j.wasman.2019.07.005
- Costa, C. M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y. and Mendez, S. L., "Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes", Energy Storage Materials, 22, pp. 346~375. (2019). https://doi.org/10.1016/j.ensm.2019.07.024
- Zhong, S., Yuan, B., Guang, Z., Chen, D., Li, Q., Dong, L., Ji, Y., Dong, Y., Han, J. and He, W., "Recent progress in thin separators for upgraded lithium ion batteries", Energy Storage Materials, 41, pp. 805~841. (2021). https://doi.org/10.1016/j.ensm.2021.07.028
- Lv, D., Chai, J., Wang, P., Zhu, L., Liu, C., Nie, S., Li, B. and Cui, G., "Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils", Carbohydr. Polym., 251(1), p. 116975. (2021).
- Xie, Y., Zou, H., Xiang, H., Xia, R., Liang, D., Shi, P., Dai, S. and Wang, H., "Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes", J. Membr. Sci., 503(1), pp. 25~30. (2016). https://doi.org/10.1016/j.memsci.2015.12.025
- Deimede, V. and Elmasides, C., "Separators for lithium-ion batteries: A review on the production processes and recent developments", Energy Technol., 3(5), pp. 453~468. (2015). https://doi.org/10.1002/ente.201402215
- Li, J., Jia, H., Ma, S., Xie, L., Wei, X.-X., Dai, L., Wang, H., Su, F. and Chen, C.-M., "Separator design for high-performance supercapacitors: Requirements, challenges, strategies, and prospects", ACS Energy Lett., 8(1), pp. 56~78. (2023).
- Zhang, X., Sahraei, E. and Wang, W., "Deformation and failure charpacteristics of four types of lithium-ion battery separators", J. Power Sources., 327(30), pp. 693~701. (2016). https://doi.org/10.1016/j.jpowsour.2016.07.078
- Shayapat, J., Chung, O, H. and Park, J, S., "Electrospun polyimide-composite separator for lithium-ion batteries", Electrochimica Acta., 170(10), pp. 110~121. (2015). https://doi.org/10.1016/j.electacta.2015.04.142
- Libich, J., Maca, J., Vondrak, J., Cech, O. and Sedlarikova, S., "Supercapacitors: Properties and applications", J. Energy Storage., 17, pp. 224~227. (2018). https://doi.org/10.1016/j.est.2018.03.012
- Sathyamoorthi, S. and Sawangphruk, S., "A simple and practical hybrid ionic liquid/aqueous dual electrolyte configuration for safe and ion-exchange membrane-free high cell potential supercapacitor", Electrochim. Acta, 305(10), pp. 443~451. (2019). https://doi.org/10.1016/j.electacta.2019.03.090
- Jin, S, Y., Manuel, J., Zhao, X., Park, W, H. and Ahn, J.-G., "Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery", J. Ind. Eng. Chem., 45(25), pp. 15~21. (2017). https://doi.org/10.1016/j.jiec.2016.08.021
- Kim, D.-H., Jekal, S., Kim, C.-G., Chu, Y.-R., Noh, J.-C., Kim, M.-S., Lee, N.-H., Song, W.-J. and Yoon, C.-M., "Facile enhancement of electrochemical performance of solid-state supercapacitor via atmospheric plasma treatment on PVA-based gel-polymer electrolyte", Gels, 9(4), p. 351. (2023).
- De Geyter, N., Morent, R. and Leys, C., "Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy", Surf. Interface Anal., 40(3-4), pp. 608~611. (2007). https://doi.org/10.1002/sia.2611
- Liu, Y., Tao, Y., Lv, X., Zhang, Y. and Di, M., "Study on the surface properties of wood/polyethylene composites treated under plasma", Appl. Surf. Sci., 257(3), pp. 1112~1118. (2010). https://doi.org/10.1016/j.apsusc.2010.08.032