DOI QR코드

DOI QR Code

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment

전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구

  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yoon-Ho Ra (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김찬교 (국립한밭대학교 화학생명공학과) ;
  • 라윤호 (국립한밭대학교 화학생명공학과) ;
  • 제갈석 (국립한밭대학교 화학생명공학과) ;
  • 윤창민 (국립한밭대학교 화학생명공학과)
  • Received : 2024.03.10
  • Accepted : 2024.03.20
  • Published : 2024.03.30

Abstract

In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

본 연구에서는 환경오염의 원인인 폐비닐을 전기방사를 통해 재활용하여 에너지 저장매체에 쓰이는 분리막으로 응용하고자 하였다. 상세히는, 폐비닐은 고분자 용액으로 만들어 전기방사 하여 비닐 폐기물 기반 분리막(VWS)를 얻은 후, 플라즈마 처리를 통해 분리막의 젖음성을 향상시켰다. FE-SEM 분석을 통해 비닐 폐기물의 농도에 따른 VWS의 형상과 두께가 달라지는 것을 확인하였다. 또한, 플라즈마 세기를 80-120W 범위로 처리하여 VWS의 젖음성을 향상시켰다. 상세히는, 플라즈마 세기를 100W로 인가하였을 때 가장 낮은 접촉각이 관찰되었으며, 전기화학 성능은 57.9F g-1로 가장 높은 비용량을 보인다. 이는 전기방사로 달성한 높은 기공도 뿐만 아니라 산소 플라즈마 처리로 도입된 친수성 작용기에 기인한다. 결론적으로, 환경오염을 유발하는 폐비닐을 전기방사와 상압 산소 플라즈마 처리를 통해 에너지 저장매체의 분리막 소재로 활용할 수 있는 가능성을 제시하였다.

Keywords

Acknowledgement

이 연구는 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)

References

  1. Ukaogo, P. O., Ewuzie, U. and Onwuka, C., "21 - Environmental pollution: Causes, effects, and the remedies", Microorganisms for Sustainable Environment and Health, pp. 419~429. (2020).
  2. Evode, N., Qamar, S. A., Bilal, M., Barcelo, D. and Iqbal, H. M. N., "Plastic waste and its management strategies for environmental sustainability", Case Stud. Chem. Environ. Eng., 4, p. 100142. (2021).
  3. Arikan, E., Simsit-Kalender, Z. T. and Vayvay, O., "Solid waste disposal methodology selection using multi-criteria decision making methods and an application in Turkey", J. Clean. Prod., 142(20), pp. 403~412. (2017). https://doi.org/10.1016/j.jclepro.2015.10.054
  4. Hwang, K.-L., Choi, S.-M., Kim, M.-K., Heo, J.-B. and Zoh, K.-D., "Emission of greenhouse gases from waste incineration in Korea", J. Environ. Manag., 196(1), pp. 710~718. (2017). https://doi.org/10.1016/j.jenvman.2017.03.071
  5. Jassim, A. K., "Recycling of polyethylene waste to produce plastic cement", Procedia Manuf., 8, pp. 635~642. (2017). https://doi.org/10.1016/j.promfg.2017.02.081
  6. Dogu, O., Pelucchi, M., Vijver, R. V., Van Steenberge, V. P. M., D'hooge, D. R., Cuoci, A., Mehl, M., Frassoldati, A., Faravelli, T. and Van Geem, K. M., "The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions", Prog. Energy Combust. Sci., 84, p. 100901. (2021).
  7. Eriksen, M. K., Christiansen, J. D., Daugaard, A. E. and Astrup T. F., "Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling", J. Waste Manag., 96(1), pp. 75~85. (2019). https://doi.org/10.1016/j.wasman.2019.07.005
  8. Costa, C. M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y. and Mendez, S. L., "Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes", Energy Storage Materials, 22, pp. 346~375. (2019). https://doi.org/10.1016/j.ensm.2019.07.024
  9. Zhong, S., Yuan, B., Guang, Z., Chen, D., Li, Q., Dong, L., Ji, Y., Dong, Y., Han, J. and He, W., "Recent progress in thin separators for upgraded lithium ion batteries", Energy Storage Materials, 41, pp. 805~841. (2021). https://doi.org/10.1016/j.ensm.2021.07.028
  10. Lv, D., Chai, J., Wang, P., Zhu, L., Liu, C., Nie, S., Li, B. and Cui, G., "Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils", Carbohydr. Polym., 251(1), p. 116975. (2021).
  11. Xie, Y., Zou, H., Xiang, H., Xia, R., Liang, D., Shi, P., Dai, S. and Wang, H., "Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes", J. Membr. Sci., 503(1), pp. 25~30. (2016). https://doi.org/10.1016/j.memsci.2015.12.025
  12. Deimede, V. and Elmasides, C., "Separators for lithium-ion batteries: A review on the production processes and recent developments", Energy Technol., 3(5), pp. 453~468. (2015). https://doi.org/10.1002/ente.201402215
  13. Li, J., Jia, H., Ma, S., Xie, L., Wei, X.-X., Dai, L., Wang, H., Su, F. and Chen, C.-M., "Separator design for high-performance supercapacitors: Requirements, challenges, strategies, and prospects", ACS Energy Lett., 8(1), pp. 56~78. (2023).
  14. Zhang, X., Sahraei, E. and Wang, W., "Deformation and failure charpacteristics of four types of lithium-ion battery separators", J. Power Sources., 327(30), pp. 693~701. (2016). https://doi.org/10.1016/j.jpowsour.2016.07.078
  15. Shayapat, J., Chung, O, H. and Park, J, S., "Electrospun polyimide-composite separator for lithium-ion batteries", Electrochimica Acta., 170(10), pp. 110~121. (2015). https://doi.org/10.1016/j.electacta.2015.04.142
  16. Libich, J., Maca, J., Vondrak, J., Cech, O. and Sedlarikova, S., "Supercapacitors: Properties and applications", J. Energy Storage., 17, pp. 224~227. (2018). https://doi.org/10.1016/j.est.2018.03.012
  17. Sathyamoorthi, S. and Sawangphruk, S., "A simple and practical hybrid ionic liquid/aqueous dual electrolyte configuration for safe and ion-exchange membrane-free high cell potential supercapacitor", Electrochim. Acta, 305(10), pp. 443~451. (2019). https://doi.org/10.1016/j.electacta.2019.03.090
  18. Jin, S, Y., Manuel, J., Zhao, X., Park, W, H. and Ahn, J.-G., "Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery", J. Ind. Eng. Chem., 45(25), pp. 15~21. (2017). https://doi.org/10.1016/j.jiec.2016.08.021
  19. Kim, D.-H., Jekal, S., Kim, C.-G., Chu, Y.-R., Noh, J.-C., Kim, M.-S., Lee, N.-H., Song, W.-J. and Yoon, C.-M., "Facile enhancement of electrochemical performance of solid-state supercapacitor via atmospheric plasma treatment on PVA-based gel-polymer electrolyte", Gels, 9(4), p. 351. (2023).
  20. De Geyter, N., Morent, R. and Leys, C., "Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy", Surf. Interface Anal., 40(3-4), pp. 608~611. (2007). https://doi.org/10.1002/sia.2611
  21. Liu, Y., Tao, Y., Lv, X., Zhang, Y. and Di, M., "Study on the surface properties of wood/polyethylene composites treated under plasma", Appl. Surf. Sci., 257(3), pp. 1112~1118. (2010). https://doi.org/10.1016/j.apsusc.2010.08.032