Acknowledgement
이 연구는 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)
References
- Baek, J.-H., Park, D.-W., Oh, G.-H., Kawk, D.-O., Park, S. S. and Kim, H.-S., "Effect of cure shrinkage of epoxy molding compound on warpage behavior of semiconductor package", Mater. Sci. Semicond. Process., 148, p. 106758. (2022).
- Shen, C.-W., Tran, P. P. and Ly, P. T. M., "Chemical waste management in the U.S. semiconductor industry", Sustainability, 10(5), p. 1545. (2018).
- Lee, C.-C., Lee, C.-C. and Chang, C.-P., "Simulation methodology development of warpage estimation for epoxy molding compound under considerations of stress relaxation characteristics and curing conditions applied in semiconductor packaging", Mater. Sci. Semicond. Process., 145, p. 106637. (2022).
- Liu, S. L., Chen, G. and Yong, M. S., "EMC characterization and process study fir electronics packaging", Thin Solid Films, 462-463, pp. 454~458. (2004). https://doi.org/10.1016/j.tsf.2004.05.080
- Inamdar, A., Yang, Y.-H., Prisacaru, A., Gromala, P. and Han, B., "High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package", Polym. Degrad. Stab., 188, p. 109572. (2021).
- Linec, M. and Music, B., "The effects of silica-based fillers on the properties of epoxy molding compounds", Materials, 12(11), p. 1811. (2019).
- Li, T., Li, P., Sun, R. and Yu, S., "Polymer-based nanocomposites in semiconductor packaging", IET Nanodielectrics, 6(3), pp. 147~158. (2023). https://doi.org/10.1049/nde2.12050
- Phansalkar, S. P., K im, C. and Han, B., "Effect of critical properties of epoxy molding compound on warpage predictionK A critical review", Microelectron. Reliab., 130, p. 114480. (2022).
- Yeon, S., Park, J. and Lee, H.-J., "Compensation method for die shift caused by flow drag force in wafer-level molding process", Micromachines, 7(6), p. 95 (2016).
- Gan, C. L., Chung, M.-H., Lin, L.-F., Huang, C.-Y. and Takiar, H., "Evolution of epoxy molding compounds and future carbon materials for thermal and mechanical stress management in memory device packaging: A critical review", J. Mater. Sci.: Mater. Electron., 34(30), p. 2011. (2023).
- Xie, W., Zhang, Z., Wang, L., Cui, X., Yu, S., Su, H. and Wang, S., "Chemical mechanical polishing of silicon wafers using developed uniformly dispersed colloidal silica in slurry", J. Manuf. Process., 90, pp. 196~203. (2023). https://doi.org/10.1016/j.jmapro.2023.01.007
- Yoon, C.-M., Lee, K., Noh, J., Lee, S. and Jang, J., "Electrorheological performance of multigram-scale mesoporous silica particles with different aspect ratios", J. Mater. Chem., 4(8), pp. 1713~1719. (2016).
- Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang. J., "Synthesis and electroresponse activity of porous polypyrrole/silica-titania core/shell nanoparticles", Langmuir., 34(51), pp. 15773~15782. (2018). https://doi.org/10.1021/acs.langmuir.8b02395
- Yoon, C.-M., "Proposal of atmospheric heating method for recycling silicon sludge from semiconductor process", J. Korean Soc. Environ., 3(23), pp. 75~81. (2023).
- Jal, P. K., Sudarshan, M., Saha, A., Patel, S. and Mishra, B. K., "Synthesis and characterization of nanosilica prepared by precipitation method", Colloids Surf A: Physicochem. Eng. Asp., 240(1-3), pp. 173~178. (2004). https://doi.org/10.1016/j.colsurfa.2004.03.021
- Kim, E., Lee, J., Park, Y., Shin, C., Yang, J. and Kim, T., "Shape classification of fumed silica abrasive and its effects on chemical mechanical polishing", Powder Technol., 381, pp. 451~458. (2021). https://doi.org/10.1016/j.powtec.2020.11.058
- Ren, G., Su, H. and Wang, S., "The combined method to synthesis silica nanoparticle by Stober process", J. Sol-Gel Sci. Technol., 96(1), pp. 108~120. (2020). https://doi.org/10.1007/s10971-020-05322-y
- Jiang, X., Tang, X., Tang, L., Zhangg, B. and Mao, H., "Synthesis and formation mechanism of amorphous silica particles via sol-gel process with tetraethylorthosilicate", Ceram. Int., 45(6), pp. 7673~7680. (2019). https://doi.org/10.1016/j.ceramint.2019.01.067
- Kang, Y.-J., Prasad, Y. N., Kim, I.-K., Jung, S.-J. and Park, J.-G., "Synthesis of Fe metal precipitated colloidal silica and its application to W chemical mechanical polishing (CMP) slurry", J. Colloid Interface Sci., 349(1), pp. 402~407. (2010). https://doi.org/10.1016/j.jcis.2010.04.083
- Rashad, M. M., Hessien, M. M., Abdel-Aal, E. A., El-Barawy, K. and Singh, R. K., "Transformation of silica fume into chemical mechanical polishing (CMP) nano-slurries for advanced semiconductor manufacturing", Powder Technol., 205(1-3), pp. 149~154. (2011). https://doi.org/10.1016/j.powtec.2010.09.005
- Wang, S. W., Liu, T., Dong, F., Sun, Y., Xue, L., Li, R., Han, X., Tian, Z. and Liu, S., "Surface action mechanism and design considerations for the mechanical integrity of Cu/low K BEOL interconnect during chemical mechanical polishing process", Microelectron. Reliab., 134, p. 114565. (2022).
- Liu, X., Sun, Q., Huang, Y., Chen, Z., Liu, G. and Zhang. D. W., "Optimization of TSV leakage in Via-Middle TSV process for wafer-level packaging", Electronics, 10(19), p. 2370. (2021).
- Wang, S., Zhang, H., Tian, Z., Liu, T., Sun, Y., Zhang, Y., Dong, F. and Liu, S., "Optimization of Cu protrusion of wafer-to-wafer hybrid bonding for HBM packages application", Mater. Sci. Semicond. Process., 152, p. 107063. (2022).
- Li, G., Xiao, C., Zhang, S., Sun, R. and Wu, Y., "An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing", J. Mater. Process. Technol., 301, p. 117453. (2022).
- Apel, Y. P., Blonskaya V. I., Orelovitch, L. O., Ramirez, P. and Sartowska, A. B., "Effect of nanopore geometry on ion current rectification", Nanotechnology, 22(17), p. 175302. (2011).
- Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang, J., "Synthesis and electroresponse activity porous polypyrrole/silica-titania core/shell nanoparticles", Langmuir., 34(51), pp. 15773~15782. (2018). https://doi.org/10.1021/acs.langmuir.8b02395
- Yoon, C.-M., Noh, J., Jang, Y. and Jang, J., "Fabrication of a silica/titania hollow nanorod and its electroresponsive activity", RSC Advances, 7(32), pp. 19754~19763. (2017). https://doi.org/10.1039/C7RA01786C
- Ullah, R., Li, H. and Zhu, Y., "Terahertz and FTIR spectroscopy of 'Bisphenol A'", J. Mol. Struct., 1059(1), pp. 255~259. (2014). https://doi.org/10.1016/j.molstruc.2013.11.055
- Corres, M. A., Zubitur, M., Cortazar, M. and Mugica A., "Thermal and thermo-oxidative degradation of poly(hydroxy eher of bisphenol-A)studied by TGA/FTIR and TGA/MS", J. Anal. Appl. Pyrolysis., 92(2), pp. 407~416. (2011). https://doi.org/10.1016/j.jaap.2011.08.002
- Lee, S., "Highly uniform silica nanoparticles with finely controlled sizes for enhancement of electroresponsive smart fluids", J. Ind. Eng. Chem., 77, pp. 426~431. (2019). https://doi.org/10.1016/j.jiec.2019.05.007
- McGrath, J. and Davis, C., "Polishing pad surface characterization in chemical mechanical planarization", J. Mater. Process. Technol., 153-154(10), pp. 666~673. (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.094
- Zhang, Z., Jin, Z. and Guo, J., "The effect of the interface reaction mode on chemical mechanical polishing", CIRP J. Manuf. Sci. Technol., 31, pp. 539~547. (2020). https://doi.org/10.1016/j.cirpj.2020.08.005