• Title/Summary/Keyword: Vinyl waste

Search Result 91, Processing Time 0.027 seconds

Fuel Oil Characteristics of Mulching Waste Vinyl by Indirect Heating Emulsion System (간접가열 유화설비에 의한 폐멀칭비닐의 연료유 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • This paper describes the fuel oil characteristics of mulching waste vinyl by indirect heating emulsion system. For the emulsion experiment of waste vinyl, the system is composed of melting furnace, the 1th pyrolysis furnace, and the 2nd pyrolysis furnace. The mulching waste vinyl is used for the fuel oil characteristics analysis of mulching waste vinyl. The refined oil, gasoline, and diesel oil are extracted and quantified to analysis the fuel oil characteristics. From the results of experiments, it has been shown that the production of fuel oil from mulching waste vinyl is possible using the emulsion system.

  • PDF

Development of wast vinyl pretreatment system by dry method (폐비닐의 건식 전처리시스템 개발)

  • Lee Hyun-Yong;Lee Jae-Kyung;Ryoo Byung-Soon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.69-70
    • /
    • 2006
  • Waste vinyl tretreatment system has been developed by the joint project between KIMM and Woosung Co. General process for removal of impurities from waste vinyl is consisted of feeding, separating, cutting, washing, drying and recovering impurities. However, there are problems such as wastewater when washing of waste vinyl. In order to solve these problems we have developed new dry type cleaning system.

  • PDF

Assessment of Applicability of Waste Vinyl Asphalt Concretes (폐비닐 아스팔트 콘크리트의 현장 적응성 연구)

  • Kim, Kwang-Woo;Li, Xiang-Fan;Lee, Soon-Jae;Kim, Sung-Un
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-114
    • /
    • 2001
  • This study is a fundamental research for recycling waste vinyl in asphalt concrete mixture for roadway pavement. The mixing method and proper content of waste polyethylene(PE) film were determined through preliminary mix design. This study used 2-type aggregate gradations and two-type waste PE films. The mixtures were applied for a test pavement on a rural road. Quality evaluation of the asphalt concrete confirmed that waste vinyl asphalt concrete was applicable to road pavement.

  • PDF

Evaluation of Asphalt Mixtures Using Waste vinyl (폐비닐 아스팔트 콘크리트 혼합물의 특성(구조 및 재료 \circled2))

  • 김광우;이상범;도영수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.259-265
    • /
    • 2000
  • This study is a fundamental research for recycling waste vinyl in asphalt concrete mixture for roadway pavement. The mixing method and proper content of waste polyethylene(PE) film were determined through preliminary mix design. This study was performed mix designs using 2 type graduations of aggregate and used two types waste PE film. The asphalt concrete mixture was satisfied with the specification of the Ministry of Construction and Transportation. Its showed that dense grade asphalt concrete mixture containing waste vinyl were higher performance in comparision to other mixtures(common dense grade mixture and gap grade mixtures). From results of this study, it was confirmed that addition of waste vinyl improved on quality of asphalt concrete mixture.

  • PDF

Mix Design for Waste PE Films Modified Asphalt Concrete (농업용 폐비닐로 개질한 아스팔트 콘크리트의 배합설계)

  • 김광우;이상범;오성균;고동혁;정승호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.313-318
    • /
    • 1999
  • This study is basic research to improve quality of asphalt concrete mixture, to preserve environment, and to recycle waste vinly. The mixing method and proper content of waste vinyl were determined through preliminary mix design. This study performed mix designs using 2 type gradations of aggregate in addtion content of wate vinly. Marshall stability at optimum asphalt content of asphalt concrete mixture addtin wate vinly was satisfied with the specification of the Ministry of Construction and Transportation , and its values indicated that dense grade asphalt concrete mixture containing waste vinyl were higher than common dense grade mixture (control). From this study, it was confirmed that addtion of waste vinyl improved quality of asphalt concrete mixture.

  • PDF

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

A Study on the Storage Stability of Waste Vinyl-Modified Asphalt (폐비닐로 개질된 아스팔트의 저장안정성에 관한 연구)

  • Kim, Kang-San;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • It is said that polymer modified asphalt using polyethylene as modifier would show phase separation due to density difference and incompatibility between asphalt and polyethylene. In this study, to prevent coalescence of polyethylene in asphalt, we employed peroxides as phase separation inhibitor. On microscope, peroxides (dicumyl peroxide, lauroyl peroxide) with waste vinyl (comprising low density polyethylene) did not show phase separation, however, rheometer test showed phase separation at molecular level, i.e., polyethylene and asphalt are immiscible ultimately. Mechanical properties (tensile strength, Marshall stability, dynamic stability) showed waste vinyl-modified asphalts are highly resistant to plastic deformation and these properties are even better than those of Superphalt.

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

A Study on the Enhancement of Inventories for Precursors (NOx, SOx) Released from Open Burning of Agricultural Waste Vinyl Causing the Secondary Generation of Particulate Matters

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.2
    • /
    • pp.195-207
    • /
    • 2021
  • Background and objective: While response measures to particulate matters in rural areas are limited due to poor inventory record keeping in the agricultural sector, it is necessary to control agricultural waste vinyl and the emission of precursors released from open burning and the secondary generation of particulate matters. Currently, the open burning emission calculation method uses the definition prescribed in CAPSS by the National Institute of Environmental Research. Methods: This study presented an open burning emission calculation formula for agricultural waste vinyl, which is included as agricultural waste. As for activity data, the open burning ratio of agricultural waste vinyl, and the annual incineration volume provided in the Status Survey by the Ministry of Agriculture, Food, and Rural Affairs were applied. The emission factor was generated through incineration tests on three agricultural plastic film samples collected by the Korea Environment Corporation. Results: Among precursors, SOx and NOx were selected and their emission features were monitored with incineration experiment infrastructure based on the EPA 5G method. The highest emission concentration by agricultural waste type was concentrated in the first and second quarters. As for emission factor of SO2, it was calculated at 98.25 g/kg for mulching-use LDPE, 52.31 g/kg for greenhouse-use LDPE, and 14.40 g/kg for HDPE. As for NOx, it was calculated at 18.21 g/kg for mulching-use LDPE, 16.49 g/kg for greenhouse-use LDPE, and 10.67 g/kg for HDPE. Conclusion: This test confirmed the incineration features of PE-based plastics, ascertained the SOx emission factor that had not been included in open burning in the past, and established that low NOx emission concentration is interfered by soil mixed with livestock excretions. The findings from this study are expected to contribute to improving the system for controlling air pollutants in rural environments.