DOI QR코드

DOI QR Code

EXPLORING NOVEL APPROACHES FOR ESTIMATING FRACTIONAL STOCHASTIC PROCESSES THROUGH PRACTICAL APPLICATIONS

  • NABIL LAICHE (Dynamic Systems and Control Laboratory, Department of Mathematics and Computer Sciences, Oum El Bouaghi University) ;
  • LAID GASMI (Lab. Mathematics Modeling and Application (LaMMA), Department of Mathematics and Informatics, Adrar University) ;
  • RAMAN VINOTH (Mam Abdulrahman Bin Faisal University) ;
  • HALIM ZEGHDOUDI (LaPS laboratory, Badji Mokhtar-Annaba University)
  • Received : 2022.09.16
  • Accepted : 2024.02.16
  • Published : 2024.03.30

Abstract

In this paper, our primary focus revolves around the examination of a set of fractional stochastic models. Through our investigation, we can establish the presence of a solution and its distinctiveness. Additionally, we employ a moment-based algorithm to estimate the coefficients within these models and provide evidence that these estimations maintain their asymptotic characteristics. To support this claim, we conduct experimental studies using simulations and numerical examples.

Keywords

Acknowledgement

The authors are grateful for the comments and suggestions by the referee and the editor. Their comments and suggestions greatly improved the article.

References

  1. T. Andersen, T. Bollerslev, & A. Hadi, ARCH and GARCH models, John Wiley & Sons, New York, 2014. 
  2. A. Behme, C. Kluppelberg, & K. Mayr, Asymmetric COGARCH processes, Journal of Applied Probability 51(A) (2014), 161-173.  https://doi.org/10.1239/jap/1417528473
  3. Bibi, Abdelouahab, and Fateh Merahi, Yule-Walker type estimator of first-order time-varying periodic bilinear differential model for stochastic processes, Communications in Statistics-Theory and Methods 49 (2020), 4046-4072.  https://doi.org/10.1080/03610926.2019.1594300
  4. Bishwal, P.N. Jaya, Parameter estimation in stochastic differential equations, Springer, 2007. 
  5. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of econometrics 31 (1986), 307-327.  https://doi.org/10.1016/0304-4076(86)90063-1
  6. Doob, L. Joseph, and Joseph L. Doob, Stochastic processes, Vol. 7, Wiley, New York, 1953. 
  7. C. Francq, & J.M. Zakoian, GARCH models: structure, statistical inference and financial applications, John Wiley & Sons, 2019. 
  8. S. Haug, C. Kluppelberg, A. Lindner, & M. Zapp, Method of moment estimation in the COGARCH (1, 1) model, The Econometrics Journal 10 (2007), 320-341.  https://doi.org/10.1111/j.1368-423X.2007.00210.x
  9. R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. 
  10. C. Kluppelberg, A. Lindner, & R. Maller, A continuous-time GARCH process driven by a Levy process: stationarity and second-order behaviour, Journal of Applied Probability 41 (2004), 601-622.  https://doi.org/10.1239/jap/1091543413
  11. J. Kallsen, & B. Vesenmayer, COGARCH as a continuous-time limit of GARCH (1, 1), Stochastic Processes and their Applications 119 (2009), 74-98.  https://doi.org/10.1016/j.spa.2007.12.008
  12. C. Kluppelberg, A. Lindner, & R. Maller, Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, In From stochastic calculus to mathematical finance (pp. 393-419), Springer, Berlin, Heidelberg, 2006. 
  13. C. Kluppelberg, R. Maller, & A. Szimayer, The COGARCH: a review, with news on option pricing, Surveys in stochastic processes, 4 (2011), 1-30. 
  14. F.Z. Meghraoui, & A. Bibi, Inference statistique dans les modeles non lineaires a temps continu, Doctoral dissertation, Universite Mentouri Constantine, 2012. 
  15. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. 
  16. T.S. Rao, & M.M. Gabr, An introduction to bispectral analysis and bilinear time series models, Vol. 24, Springer Science & Business Media, 2012. 
  17. Scalas, Enrico, Rudolf Gorenflo, and Francesco Mainardi. Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications 284 (2000), 376-384.  https://doi.org/10.1016/S0378-4371(00)00255-7
  18. D. Tj∅stheim, Estimation in nonlinear time series models, Stochastic Processes and their Applications 21 (1986), 251-273.  https://doi.org/10.1016/0304-4149(86)90099-2
  19. Zhang, Zhongqiang, and George Em Karniadakis, Numerical methods for stochastic partial differential equations with white noise, Springer International Publishing, Heidelberg, Berlin, Germany, 2017. 
  20. J.M. Zakoian, Threshold heteroskedastic models, Journal of Economic Dynamics and control 18 (1994), 931-955.  https://doi.org/10.1016/0165-1889(94)90039-6
  21. Y. Zhou, L. Shangerganesh, J. Manimaran, & A. Debbouche, A class of time-fractional reaction-diffusion equation with nonlocal boundary condition, Mathematical Methods in the Applied Sciences 41 (2018), 2987-2999.  https://doi.org/10.1002/mma.4796
  22. Y. Zhou, J. Wang, & L. Zhang, Basic theory of fractional differential equations, World scientific, 2016.