Acknowledgement
The authors are grateful for the comments and suggestions by the referee and the editor. Their comments and suggestions greatly improved the article.
References
- T. Andersen, T. Bollerslev, & A. Hadi, ARCH and GARCH models, John Wiley & Sons, New York, 2014.
- A. Behme, C. Kluppelberg, & K. Mayr, Asymmetric COGARCH processes, Journal of Applied Probability 51(A) (2014), 161-173. https://doi.org/10.1239/jap/1417528473
- Bibi, Abdelouahab, and Fateh Merahi, Yule-Walker type estimator of first-order time-varying periodic bilinear differential model for stochastic processes, Communications in Statistics-Theory and Methods 49 (2020), 4046-4072. https://doi.org/10.1080/03610926.2019.1594300
- Bishwal, P.N. Jaya, Parameter estimation in stochastic differential equations, Springer, 2007.
- T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of econometrics 31 (1986), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Doob, L. Joseph, and Joseph L. Doob, Stochastic processes, Vol. 7, Wiley, New York, 1953.
- C. Francq, & J.M. Zakoian, GARCH models: structure, statistical inference and financial applications, John Wiley & Sons, 2019.
- S. Haug, C. Kluppelberg, A. Lindner, & M. Zapp, Method of moment estimation in the COGARCH (1, 1) model, The Econometrics Journal 10 (2007), 320-341. https://doi.org/10.1111/j.1368-423X.2007.00210.x
- R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000.
- C. Kluppelberg, A. Lindner, & R. Maller, A continuous-time GARCH process driven by a Levy process: stationarity and second-order behaviour, Journal of Applied Probability 41 (2004), 601-622. https://doi.org/10.1239/jap/1091543413
- J. Kallsen, & B. Vesenmayer, COGARCH as a continuous-time limit of GARCH (1, 1), Stochastic Processes and their Applications 119 (2009), 74-98. https://doi.org/10.1016/j.spa.2007.12.008
- C. Kluppelberg, A. Lindner, & R. Maller, Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models, In From stochastic calculus to mathematical finance (pp. 393-419), Springer, Berlin, Heidelberg, 2006.
- C. Kluppelberg, R. Maller, & A. Szimayer, The COGARCH: a review, with news on option pricing, Surveys in stochastic processes, 4 (2011), 1-30.
- F.Z. Meghraoui, & A. Bibi, Inference statistique dans les modeles non lineaires a temps continu, Doctoral dissertation, Universite Mentouri Constantine, 2012.
- I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
- T.S. Rao, & M.M. Gabr, An introduction to bispectral analysis and bilinear time series models, Vol. 24, Springer Science & Business Media, 2012.
- Scalas, Enrico, Rudolf Gorenflo, and Francesco Mainardi. Fractional calculus and continuous-time finance, Physica A: Statistical Mechanics and its Applications 284 (2000), 376-384. https://doi.org/10.1016/S0378-4371(00)00255-7
- D. Tj∅stheim, Estimation in nonlinear time series models, Stochastic Processes and their Applications 21 (1986), 251-273. https://doi.org/10.1016/0304-4149(86)90099-2
- Zhang, Zhongqiang, and George Em Karniadakis, Numerical methods for stochastic partial differential equations with white noise, Springer International Publishing, Heidelberg, Berlin, Germany, 2017.
- J.M. Zakoian, Threshold heteroskedastic models, Journal of Economic Dynamics and control 18 (1994), 931-955. https://doi.org/10.1016/0165-1889(94)90039-6
- Y. Zhou, L. Shangerganesh, J. Manimaran, & A. Debbouche, A class of time-fractional reaction-diffusion equation with nonlocal boundary condition, Mathematical Methods in the Applied Sciences 41 (2018), 2987-2999. https://doi.org/10.1002/mma.4796
- Y. Zhou, J. Wang, & L. Zhang, Basic theory of fractional differential equations, World scientific, 2016.