DOI QR코드

DOI QR Code

ON THE LINEAR EQUIVALENCE OF SEQUENCES IN HILBERT SPACES

  • Received : 2022.10.27
  • Accepted : 2023.12.19
  • Published : 2024.03.30

Abstract

A similarity transformation of a solution of the Cauchy problem for the linear difference equation in Hilbert space has been studied. In this manuscript, we obtain necessary and sufficient conditions for linear equivalence of the discrete semigroup of operators, generated by the solution of the difference equation utilizing four Canonical semigroups.

Keywords

Acknowledgement

The authors wish to thank the reviewers for valuable comments and suggestions.

References

  1. A. Bataihah, T. Qawasmeh, and M. Shatnawi, Discussion on b-metric spaces and related results in metric and G-metric spaces, Nonlinear Functional Analysis and Applications 27 (2022), 233-247. https://doi.org/10.22771/NFAA.2022.27.02.02
  2. N. Djenina, A. Ouannas, T.-E. Oussaeif, G. Grassi, I.M. Batiha, S. Momani, R.B. Albadarneh, On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems, Fractal Fract. 158 (2022), 158.
  3. R. Hatamleh, On the form of correlation function for a class of nonstationary field with a zero spectrum, Rocky Mountain Journal of Mathematics 33 (2003), 159-173. https://doi.org/10.1216/rmjm/1181069991
  4. R. Hatamleh, V.A. Zolotarev, On Two-Dimensional Model Representations of One Class of Commuting Operators, Ukrainian Mathematical Journal 66 (2014), 122-144. https://doi.org/10.1007/s11253-014-0916-9
  5. R. Hatamleh, V.A. Zolotarev, On model representations of nonselfadjoint operators with infinitely dimensional imaginarycomponent, Journal of Mathematical Physics, Analysis, Geometry 11 (2015), 174-186.
  6. R. Hatamleh, V.A. Zolotarev, On Two-Dimensional Model Representations of One Class of Commuting Operators, Ukrainian Mathematical Journal 66 (2014), 122-144. https://doi.org/10.1007/s11253-014-0916-9
  7. M.S. Livshits, A.A. Yantsevich, Operator Colligation in Hilbert Space, John Wily and Sons, New York, 1979.
  8. T. Qawasmeh, W. Shatanawi, A. Bataihah, and A. Tallafha, Fixed point results and (α, β)-triangular admissibility in the frame of complete extended b-metric spaces and application, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 83 (2021), 113-124.
  9. M.M. Malamud, E.R. Tsekanovski, Criterion of Volterra Operators Linear Equivalence in the LP [0,1](1 ≤ P ≤ ∞) Space, Izv. Akad. Nauk SSSR Russian Math. Surv. 41 (1977), 768-793.
  10. L.A. Sakhnovich, On Similarity of Linear Operators, Sov. Math. Dokl. 15 (1971), 1445-1449.
  11. L.A. Sakhnovich, Intorpolation Theory and it's Application, Kluwer Academi Publishers, Dordrecht, Boston-London, 1979.
  12. L.A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Bizkhauser Verlag, Basel-Boston-Berlin, 1999.
  13. M.T. Shatnawi, N. Noureddine Djenina, A. Ouannas, I.M. Batiha, Giuseppe Grassi, Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems, Alexandria Engineering Journal 61 (2022), 1655-1663. https://doi.org/10.1016/j.aej.2021.06.073
  14. T. Qawasmeh, and R. Hatamleh, A new contraction based on -simulation functions in the frame of extended b-metric spaces and application, International Journal of Electrical and Computer Engineering (IJECE) 13 (2023), 4212-4221.
  15. A.S. Heilat, H. Zureigat, R. Hatamleh, and B. Batiha, New spline method for solving linear two-point boundary value problems, European Journal of Pure and Applied Mathematics 14 (2021), 1283-1294. https://doi.org/10.29020/nybg.ejpam.v14i4.4124
  16. B. Batiha, F. Ghanim, O. Alayed, R. Hatamleh, A.S. Heilat, H. Zureigat, and O. Bazighifan, Solving Multispecies Lotka-Volterra Equations by the Daftardar-Gejji and Jafari Method, International Journal of Mathematics and Mathematical Sciences (2022), 1-7.
  17. A.S. Heilat, B. Batiha, T. Qawasmeh, and R. Hatamleh, Hybrid Cubic B-spline Method for Solving A Class of Singular Boundary Value Problems, European Journal of Pure and Applied Mathematics 16 (2023), 751-762.
  18. A. Hazaymeh, A. Qazza, R. Hatamleh, M.W. Alomari, R. Saadeh, On further refinements of numerical radius inequalities, Axioms 12 (2023), 807.