DOI QR코드

DOI QR Code

Proposal for Phenomena-based Experimental Education through Reconsidering the Meaning of Experimentation: Based on Ian Hacking's Creation of Phenomena

실험의 의미 재고를 통한 현상중심의 실험교육의 필요성 제안 -이언 해킹(Ian Hacking)의 현상의 창조를 중심으로-

  • Received : 2023.10.13
  • Accepted : 2024.02.04
  • Published : 2024.02.29

Abstract

In this study, we explored the philosophical perspective of Ian Hacking on experimentation and discussed its potential impact on science education in schools. Traditionally, many philosophers have advocated a theory-driven view of experimentation, emphasizing its importance primarily in validating theories. Similarly, in the context of education, the prevailing perspective has been to focus on experimentation primarily as a means of confirming and proving theories. However, in contrast to this theory-driven perspective, philosophers like Hacking have proposed that experimentation itself possesses autonomy and vitality. Through their discussions, they have brought to light the significance of previously overlooked elements in experiments, such as tool usage, materials, and the involvement of scientists. They have prompted a reevaluation of the role and importance of experiments in scientific activities. Therefore, in this study, we consider the application of this philosophical standpoint to school experimental education. We anticipate that the phenomenon-centered perspective we propose in this research will be beneficial for teaching scientific practices, including tool usage, the involvement of experimenters, and modeling activities.

본 연구에서는 이언 해킹(Ian Hacking)의 실험 철학에 대한 철학적 관점을 탐구하고 이 관점이 학교 실험 교육에 미칠 영향에 대한 논의하였다. 그간 다수의 철학자들은 실험이 이론을 검증할 때에만 중요하다는 이론 선행적인 관점을 주장하였다. 이와 마찬가지로 학교 교육에서도 실험의 주요 목적은 이론의 확인과 입증에 초점을 맞춘 관점이 주류를 이룬 것으로 보인다. 그러나 이러한 이론 선행적인 관점과는 대조적으로 해킹을 포함한 실험 철학자들은 실험 자체가 자율성과 생명력을 갖는다는 주장을 제안하였다. 해킹은 개입하기와 조작하기를 통해 실험의 이론 자율적인 성격을 강조하면서 실험에서 그동안 상대적으로 간과되었던 도구 사용, 재료, 과학자의 솜씨와 같은 요소들의 중요성을 강조하였고, 과학 활동에서의 실험의 역할과 그의 중요성을 재고하였다. 본 연구에서는 이러한 철학적 입장이 학교 실험교육에도 적용할 수 있는 것으로 보았으며, 본 연구에서 제시하는 현상중심의 관점을 통해 도구 사용, 실험자의 개입, 모델링 활동과 같은 과학적 실천을 가르치는 데 도움이 될 것으로 예상한다.

Keywords

References

  1. Abrahams, I., & Reiss, M. J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49(8), 1035-1055. https://doi.org/10.1002/tea.21036
  2. Ackermann, R. (1989). The new experimentalism. The British Journal for the Philosophy of Science, 40(2), 185-190. https://doi.org/10.1093/bjps/40.2.185
  3. Armstrong, H. E. (1910). The teaching of scientific method and other papers on education. London: Macmillan.
  4. APSNews. (2002). June 1963: Discovery of the Cosmic Microwave Background, APSNews. Retrieved from https://www.aps.org/publications/apsnews/200207/history.cfm
  5. Bacon, F. (1620). Novum organum (Kim Hong Pyo, Trans.). Commbooks.
  6. Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. University of Pittsburgh Pre.
  7. Barman, C. R. (1999). Completing the study: High school students' views of scientists and science. Science and Children, 36(7), 16-21.
  8. Boylan, C. R. (1992). Beyond Stereotypes. Science Education, 76(5), 465-476. https://doi.org/10.1002/sce.3730760502
  9. Cartwright, N., & McMullin, E. (1984). How the law of physics lie.
  10. Chambers, D. W. (1983). Stereotypic images of the scientist: The draw-a-scientist test. Science Education, 67(2), 255-265. https://doi.org/10.1002/sce.3730670213
  11. Chang, H. (2012). Is water H2O?: Evidence, realism and pluralism (Vol. 293). Springer Science & Business Media.
  12. Chang, H. (2014). Science Meets Philosophy. Jisikplus.
  13. Cho, E., Choi, C. I., & Yoon, H.-G. (2023). Pre-service Elementary Teachers' Orientation toward Scientific Inquiry Teaching: Focusing on the Anomalous Situation. Journal of Korean Elementary Science Education, 42(2), 211-226. https://doi.org/10.15267/KESES.2023.42.2.211
  14. Choi, J., & Jeon, S.-H. (2022). Implications of the 'Sontanda' Phenomenon of Scientists for Science Education: Focusing on Ian Hacking's Creation of Phenomena. Journal of the Korean Association for Science Education, 42(2), 253-264.
  15. Clement, J. J. (2008). Student/teacher co-construction of visualizable models in large group discussion. In Model based learning and instruction in science (pp. 11-22). Springer.
  16. Council, N. R. (2013). Next generation science standards: For states, by states.
  17. Fung, Y. Y. (2002). A comparative study of primary and secondary school students' images of scientists. Research in Science & Technological Education, 20(2), 199-213. https://doi.org/10.1080/0263514022000030453
  18. Galison, P. L. (1987). How experiments end. In. Chicago : University of Chicago Press.
  19. Galison, P. L. (1997). Image and logic; A material culture of microphysics. University of Chicago Press.
  20. Gelfert, A. (2003). Manipulative success and the unreal. International Studies in the Philosophy of Science, 17(3), 245-263. https://doi.org/10.1080/0269859032000169451
  21. Giere, R. N., Bickle, J., & Mauldin, R. F. (1991). Understanding scientific reasoning.
  22. Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge university press.
  23. Hacking, I. (1991). Speculation, Calculation and the Creation of Phenomena. In G. Munevar (Ed.), Beyond reason: Essays on the philosophy of Paul Feyerabend (Vol. 132). Springer Science & Business Media.
  24. Han, S. (2004a). Educational Reflections on Laboratory Experiment in School Science The Journal of Educational Principles, 9(1), 47-82.
  25. Han, S. (2004b). Reflection on laboratory experiment in school science in the perspective of endogenous theory of education (Doctoral dissertation). Seoul National University.
  26. Han, S., Choi, S., & Noh, T. (2012). Epistemological Views of Middle School Students on Scientific Inquiry. Journal of the Korean Association for Science Education, 32(1), 82-94. https://doi.org/10.14697/jkase.2012.32.1.082
  27. Hodson, D. (1986). Rethinking the role and status of observation in Science Education. Journal of Curriculum Studies, 18(4), 381-386. https://doi.org/10.1080/0022027860180403
  28. Hodson, D. (1996a). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28(2), 115-135. https://doi.org/10.1080/0022027980280201
  29. Hodson, D. (1996b). Practical work in school science: exploring some directions for change. International Journal of Science Education, 18(7), 755-760. https://doi.org/10.1080/0950069960180702
  30. Hong, S. (2020). The Evolution of the Laboratory. Gimmyoung.
  31. Huber, R. A., & Burton, G. M. (1995). What do students think scientists look like? School Science and Mathematics, 95(7), 371-376. https://doi.org/10.1111/j.1949-8594.1995.tb15804.x
  32. Huxley, T. H. (1893). Science & education (Vol. 3). Macmillan.
  33. Hwang, S. W., (2002). The Role of phenomenon-making activities in learning electromagnetism (Doctoral dissertation). Seoul National University.
  34. Jenkins, E. W. (1980). From Armstrong to Nuffield: Studies in twentieth-century science education in England and Wales. British Journal of Educational Studies, 28(1).
  35. Joung, Y.-J., Jang, M.-D., & Kim, H.-J. (2011a). Why do We do Science Experiments? : Scientifically Gifted Children's Views about the Purpose of Science Experiments. Journal of Korean Elementary Science Education, 30(2), 189-203.
  36. Joung, Y.-J., Jang, M.-D., & Kim, H.-J. (2011b). Elementary Pre-service Teachers' Views about the Purpose of Science Experiments. Journal of Korean Elementary Science Education, 30(2), 255-270.
  37. Kim, H., & Song, J. (2003). Middle School Students' Ideas about the Purposes of Laboratory Work. Journal of the Korean Association for Science Education, 23(3), 254-264.
  38. K, H., Park, S.-K., & Kim, Y. (2012). A Comparative study of Middle School Students' Images and Perceptions of Scientist, Technician and Engineer. Journal of the Korean Association for Science Education, 32(1), 64-81. https://doi.org/10.14697/JKASE.2012.32.1.064
  39. Kim, J.-H., Kim, H.-N., & Yang, I.-H. (2019). Review on the Roles of Laboratory Work in School. Journal of Korean Elementary Science Education, 38(2), 203-215.
  40. Kim, J.-H., Kim, H.-N., & Yang, I.-H. (2020). An Analysis on the Recognition of Elementary Teachers about the Role of Science Practical Work at School. Teacher Education Research, 59(1), 51-64. https://doi.org/10.15812/TER.59.1.202003.51
  41. Kim, J., & Cho, B. (2002). Perceptions about Science and Scientific Activity of Students in Kindergarten and Primary School. Journal of the Korean Association for Science Education, 22(3), 617-631.
  42. Kim, K.-Y., Lee, J.-H., Choi, J., Jeon, S.-H., & Lee, S. (2022a). Characteristics of Modeling of Experiment in Case Analysis of Students' Open Inquiry and its Meaning on Science Education. Journal of the Korean Association for Science Education, 42(2), 201-214.
  43. Kim, K.-Y., Lee, J.-H., Choi, J., Lee, H., Jeon, S.-H., & Lee, S. (2022b). Exploring Data Modeling in Scientific Practice - Focusing on Phenomenon Production and Evidencing -. BIOLOGY EDUCATION, 50(4), 529-542. https://doi.org/10.15717/BIOEDU.2022.50.4.529
  44. Kuhn, T. S. (2012). The structure of scientific revolutions. University of Chicago press.
  45. Lakatos, I. (2014). Falsification and the methodology of scientific research programmes. In Philosophy, Science, and History (pp. 89-94). Routledge.
  46. Latour, B., & Woolgar, S. (2013). Laboratory life: The construction of scientific facts. Princeton University Press.
  47. Lee, H., Lee, J.-H., Choi, J., Kim, K.-Y., & Lee, S. (2023). Rethinking the Knowledge Viewpoint in Practice-Oriented Science Education and its Relationship with Scientific Modeling. Journal of Korean Elementary Science Education, 42(2), 343-366.
  48. Lee, S. W. (2002). Two Roles of Experiment: Fact Aquisition and Theory Testing. CHEOLHAK, 72, 273-294.
  49. Lee, S. W. (2004). A philosophical approach to experimentation. Seokwangsa.
  50. Lee, S. W. (2006). Autonomy and Constrained Nature of Experimentation: Various Relations between Theory, Instrument, and Experiment. KOREAN JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 9(1), 75-92.
  51. Lee, S. W. (2008). Not Theory Testing but the Innovation of Experimental Techniques: -Unhierarchical Interrelation between Experiment and Thoery-. Journal of Humanities, 42, 235-256.
  52. Lee, S. W. (2011). The Production of Facts and Laboratory Space CHUL HAK SA SANG - Journal of Philosophical Ideas, 40, 207-238. https://doi.org/10.15750/chss..40.201105.006
  53. Lee, W., Kim, H., & Song, J. (2008). Secondary School Students' Images of Doing-Science-Well. Journal of the Korean Association for Science Education, 28(1), 1-14.
  54. Lim, H., & Yeo, S.-I. (2001). Gifted Children's Perceptions of Scientists. Journal of Gifted/Talented Education, 11(2), 39-58.
  55. Lunetta, V. N., Hofstein, A., & Clough, M. P. (2013). Learning and teaching in the school science laboratory: An analysis of research, theory, and practice. In Handbook of Research on Science Education (pp. 393-441). Routledge.
  56. Maoldomhnaigh, M. O., & Hunt, A. (1988). Some factors affecting the image of the scientist drawn by older primary school pupils. Research in Science & Technological Education, 6(2), 159-166. https://doi.org/10.1080/0263514880060206
  57. Matthews, M. R. (1994). Science teaching : the role of history and philosophy of science. Psychology Press.
  58. Millar, R. (2005). What is 'scientific method'and can it be taught? In Teaching science (pp. 172-185). Routledge.
  59. Millar, R., Tiberghien, A., & Le Marechal, J.-F. (2002). Varieties of labwork: A way of profiling labwork tasks. Teaching and learning in the science laboratory, 9-20.
  60. Morrison, M. (1990). Theory, intervention and realism. Synthese, 82(1), 1-22. https://doi.org/10.1007/BF00413667
  61. Nott, M., & Smith, R. (1995). 'Talking your way out of it', 'rigging' and 'conjuring': what science teachers do when practicals go wrong. International Journal of Science Education, 17(3), 399-410. https://doi.org/10.1080/0950069950170310
  62. Oh, P. S. (2020). A Critical Review of the Skill-Based Approach to Scientific Inquiry in Science Education. Journal of the Korean Association for Science Education, 40(2), 141-150.
  63. Park, J., Chang, J., & Song, J. (2016). Why did I Cope with so?: A Teacher's Strategy to Cope with Anomalous Situations in Primary Practical Science Lessons. Journal of Korean Elementary Science Education, 35(3), 277-287. https://doi.org/10.15267/KESES.2016.35.3.277
  64. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In Model based learning and instruction in science (pp. 23-43). Springer.
  65. Resnik, D. B. (1994). Hacking's Experimental Realism. Canadian Journal of Philosophy, 24(3), 395-411. https://doi.org/10.1080/00455091.1994.10717376
  66. Sanderson, B. A., & Kratochvil, D. W. (1971). Science--A Process Approach, Product Development Report No. 8.
  67. Shapere, D. (1993). Astronomy and Antirealism. Philosophy of Science, 60(1), 134-150. https://doi.org/10.1086/289722
  68. Shin, S., Lee, J.-K. & Ha, M. (2016). Pre-service Biology Teachers' Value Orientation Related to Observation and Representation: Focus on Objectivity Journal of the Korean Association for Science Education, 36(4), 617-628. https://doi.org/10.14697/JKASE.2016.36.4.0617
  69. Song, J., Kang, S., Kwak, Y., Kim, D., Kim, S., Na, J., ... Joung. Y. J. (2019). Contents and Features of 'Korean Science Education Standards (KSES)' for the Next Generation. Journal of the Korean Association for Science Education, 39(3), 465-478.
  70. Stevens, P. (1978). On the Nuffield Philosophy of Science. Journal of Philosophy of Education.
  71. Stroupe, D. (2015). Describing "science practice" in learning settings. Science Education, 99(6), 1033-1040. https://doi.org/10.1002/sce.21191
  72. The Ministry of Education. (2022). Science curriculum. Sejong: The Ministry of Education.
  73. Turner, D. M. (1927). History of science teaching in England. Arno Press.
  74. Wei, B., & Li, X. (2017). Exploring science teachers' perceptions of experimentation: implications for restructuring school practical work. International Journal of Science Education, 39(13), 1775-1794. https://doi.org/10.1080/09500693.2017.1351650
  75. Wellington, J. (2002). Practical work in school science: Which way now? Routledge.
  76. Wong, S. L., & Hodson, D. (2009). From the horse's mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93(1), 109-130.
  77. Woolnough, B. E. (1983). Exercises, Investigations and Experiences. Physics Education, 18(2), 60-63. https://doi.org/10.1088/0031-9120/18/2/305
  78. Woolnough, B., & Allsop, T. (1985). Practical Work in Science. Cambridge University Press.
  79. Yang, I., & Cho, H. (2005). Review on the Aims of Laboratory Activities in School Science. Journal of Korean Elementary Science Education, 24(3), 268-280.
  80. Yoon, H.-G. (2008). Elementary Teachers' Dilemmas of Teaching Science Practical Work. Journal of Korean Elementary Science Education, 27(2), 102-116.
  81. Yoon, J., Park, S., & Myeong. J.-O. (2006). A Survey of Primary and Secondary School Students' Views in Relation to a Career in Science. Journal of the Korean Association for Science Education, 26(6), 675-690.