DOI QR코드

DOI QR Code

Characteristics and Changes in Scientific Empathy during Students' Productive Disciplinary Engagement in Science

학생들의 생산적 과학 참여에서 발현되는 과학공감의 특성과 변화 분석

  • Received : 2023.10.06
  • Accepted : 2024.01.11
  • Published : 2024.02.29

Abstract

This study aimed to investigate the role of scientific empathy in influencing students' productive disciplinary engagement in scientific activities and analyze the key factors of scientific empathy that manifest during this process. Twelve fifth-grade students were divided into three subgroups based on their general empathic abilities. Lessons promoting productive disciplinary engagement, integrating design thinking processes, were conducted. Subgroup discourse analysis during idea generation and prototype stages, two of five problem-solving steps, enabled observation of scientific empathy and practice aspects. The results showed that applying scientific empathy effectively through design thinking facilitated students' productive disciplinary engagement in science. In the idea generation stage, we observed an initial increase followed by a decrease in scientific empathy and practice utterances, while during the prototyping stage, utterance frequency increased, particularly in the later part. However, subgroups with lower empathic abilities displayed decreased discourse frequency in scientific empathy and practice during the prototype stage due to a lack of collaborative communication. Across all empathic ability levels, the students articulated all five key factors of scientific empathy through their utterances in situations involving productive science engagement. In the high empathic ability subgroup, empathic understanding and concern were emphasized, whereas in the low empathic ability subgroup, sensitivity, scientific imagination, and situational interest, factors of empathizing with the research object, were prominent. These results indicate that experiences of scientific empathy with research objects, beyond general empathetic abilities, serve as a distinct and crucial factor in stimulating diverse participation and sustaining students' productive engagement in scientific activities during science classes. By suggesting the potential multidimensional impact of scientific empathy on productive disciplinary engagement, this study contributes to discussions on the theoretical structure and stability of scientific empathy in science education.

본 연구는 학생들의 생산적인 과학 참여에 영향을 미치는 과학공감의 역할을 조사하고, 해당 과정에서 나타나는 과학공감의 주요 요소를 분석하는 것을 목표로 하였다. 초등학교 5학년 학생 12명이 본 연구에 참여하였고, 일반공감 능력을 기준으로 세 집단으로 나누어 디자인적 사고 과정을 적용한 생산적 과학 참여 수업을 진행하였다. 문제 해결의 다섯 단계 중 아이디어 생성과 프로토타입에서 소집단의 발화를 분석하여 과학공감과 과학실천 측면에서 관찰하였다. 분석결과, 디자인적 사고 과정을 효과적으로 적용한 과학 공감은 학생들의 생산적 과학 참여를 촉진하는 것으로 나타났다. 이에 세 집단의 과학공감 및 과학실천의 평균 발화 빈도가 아이디어 생성 단계에서는 증가한 후 감소하는 경향이 나타났으며, 프로토타입 단계에서는 후반부에 오히려 발화 빈도가 증가했다. 그러나 일반공감 능력이 낮은 소집단은 프로토타입 단계에서 협력적 의사소통의 결여로 과학공감과 과학실천의 발화 빈도가 감소하는 것으로 관찰되었다. 뿐만 아니라, 학습자들은 생산적인 과학 참여 상황에서 5가지 주요 과학공감 구성요소가 모두 발화로 드러났다. 높은 일반공감 능력 집단에서는 타인과의 과학공감 요소인 공감적 이해와 공감적 걱정이 높은 빈도로 나타났으나, 낮은 일반공감 능력 집단에서는 연구대상과의 과학공감 요소인 민감성, 과학적 상상, 상황적 관심이 상대적으로 더 높은 빈도로 관찰되었다. 이러한 결과는 과학 수업에서 타인뿐만 아니라 연구대상과의 과학적으로 공감하는 경험이, 일반적인 공감 능력과는 별개의 중요한 특성으로 학생들의 생산적 과학 활동을 다양한 참여를 유발하며 이를 지속하게 할 수 있음을 시사한다. 본 연구는 과학공감이 학생들의 생산적 과학 참여에 다양한 방향으로 영향을 미칠 수 있다는 가능성을 제시하여, 과학 수업에서 과학공감의 이론적 구조와 안정성에 대한 논의에 기여할 것으로 판단된다.

Keywords

References

  1. Basadur, M., Graen, G., & Wakabayashi, M. (1990). Identifying individual differences in creative problem solving style. The Journal of Creative Behavior, 24(2), 111-131.
  2. Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A., & Hornstein, M. (2010). Destination, imagination and the fires within: Design thinking in a middle school classroom. International Journal of Art & Design Education, 29(1), 37-53. https://doi.org/10.1111/j.1476-8070.2010.01632.x
  3. Chun, O., Yang, H., & Kang, S. (2018). Exploration of empathy factors in the science and development of related scales. Cogent Education, 5(1), 1499477.
  4. Clapp, E. P., Ross, J., Ryan, J. O., & Tishman, S. (2016). Maker-centered learning: Empowering young people to shape their worlds. John Wiley & Sons.
  5. Coughlan, P., Suri, J. F., & Canales, K. (2007). Prototypes as (design) tools for behavioral and organizational change: A design-based approach to help organizations change work behaviors. The Journal of Applied Behavioral Science, 43(1), 122-134.
  6. Cuff, B. M., Brown, S. J., Taylor, L., & Howat, D. J. (2016). Empathy: A review of the concept. Emotion Review, 8(2), 144-153. https://doi.org/10.1177/1754073914558466
  7. Dasgupta, C. (2019). Improvable models as scaffolds for promoting productive disciplinary engagement in an engineering design activity. Journal of Engineering Education, 108(3), 394-417. https://doi.org/10.1002/jee.20282
  8. Dini, V., Jaber, L., & Danahy, E. (2019). Dynamics of scientific engagement in a blended online learning environment. Research in Science Education, 1-29.
  9. Duckworth, E. (2006). "The having of wonderful ideas" and other essays on teaching and learning (3rd ed.). New York: Teachers College Press
  10. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  11. Engle, R. A. (2012). The productive disciplinary engagement framework: origins, key concepts and developments. In Y. Dai (Ed.), Design research on learning and thinking in educational settings: enhancing intellectual growth and functioning (pp. 161-200). New York: Routledge.
  12. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. https://doi.org/10.1207/S1532690XCI2004_1
  13. Feist, G. J. (2006). How development and personality influence scientific thought, interest, and achievement. Review of General Psychology, 10(2), 163-182. https://doi.org/10.1037/1089-2680.10.2.163
  14. Ford, M. J., & Forman, E. A. (2006). Redefining disciplinary learning in classroom contexts. Review of Research in Education, 30, 1-32. https://doi.org/10.3102/0091732X030001001
  15. Fortus, D. (2014). Attending to affect. Journal of Research in Science Teaching, 51(7), 821-835. https://doi.org/10.1002/tea.21155
  16. Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 436-445. https://doi.org/10.2307/798843
  17. Gruber, H. E. (1974). Darwin on man: A psychological study of scientific creativity. Chicago, IL: University of Chicago Press
  18. Gruber, H. E. (2005). Creativity, psychology, and the history of science (1. Aufl. ed.). Dordrecht: Springer.
  19. Hafner, R., & Stewart, J. (1995). Revising explanatory models to accommodate anomalous genetic phenomena: Problem solving in the "context of discovery". Science Education, 79(2), 111-146. https://doi.org/10.1002/sce.3730790202
  20. Han, M., & Oh, P. S. (2023). Empathetic and Disciplinary Utterances: Two Elementary School Teachers' Contrasting Approaches During Students' Construction of Scientific Explanations. Journal of the Korean Association for Research in Science Education, 43(2), 167-180.
  21. Hammer, D. (1997). Discovery learning and discovery teaching. Cognition and Instruction, 15(4), 485-529. https://doi.org/10.1207/s1532690xci1504_2
  22. Hammer, D. (2004). The variability of student reasoning, lectures 1-3. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI. Bologna: Italian Physical Society.
  23. Hidi, S., Renninger, K. A., & Krapp, A. (2004). Interest, a motivational variable that combines affective and cognitive functioning. Motivation, emotion, and cognition: Integrative perspectives on intellectual functioning and development, 89, 115.
  24. Jaber, L. Z., & Hammer, D. (2016). Learning to feel like a scientist. Science Education, 100(2), 189-220.
  25. Jaber, L. Z., Robertson, A., Scherr, R., & Hammer, D. (2015). Attending to students' epistemic affect. In Robertson, A. D., Scherr, R. E., & Hammer, D. (Eds.), Responsive Teaching inScience and Mathematics, pp. 162-188. New York : Routledge.
  26. Jones, T. S., & Richey, R. C. (2000). Rapid prototyping methodology in action: A developmental study. Educational Technology Research and Development, 48(2), 63-80. https://doi.org/10.1007/BF02313401
  27. Kelley, T., & Kelley, D. (2013). Creative confidence: Unleashing the creative potential within us all Crown Business.
  28. Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27-50 https://doi.org/10.1080/09500693.2010.518645
  29. Lee, D., Yoon, J., & Kang, S. (2015). The suggestion of design thinking process and its feasibility study for fostering group creativity of elementary-secondary school students in science education. Journal of the Korean Association for Science Education, 35(3), 443-453. https://doi.org/10.14697/jkase.2015.35.3.0443
  30. Lee, J., You, S., & Lee, Y.(2014). A study on the development of empathy based learning model. Korean Journal of Teacher Education, 30(4), 151-177. https://doi.org/10.14333/KJTE.2014.30.4.151
  31. Next Generation Science Standards (NGSS) Lead States (2013). Next Generation Science Standards: For Sates, by States. Washington, DC: Achieve Inc.
  32. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  33. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079.
  34. Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129. https://doi.org/10.1080/03057267.2014.881626
  35. Root-Bernstein, R. S. (2002). Aesthetic cognition. International Studies in the Philosophy of Science, 16(1), 61-77. https://doi.org/10.1080/02698590120118837
  36. Root-Bernstein, R. S., & Root-Bernstein, M. (2001). Sparks of genius: The thirteen thinking tools of the world's most creative people. Houghton Mifflin Harcourt.
  37. Roth, W. M. (2012). Authentic school science: Knowing and learning in open-inquiry science laboratories (Vol. 1). Springer Science & Business Media.
  38. Treffinger, D. J., Isaksen, S. G., & Dorval, K. B. (2000). Creative problem solving: Anintroduction (3rd Ed.). Waco, TX: Prufrock Press.
  39. Watson, J. D. (1968). The Double Helix: Being a Personal Account of the Discovery of the Structure of DNA. New York, Atheneum.
  40. Yang, H., & Kang, S. (2019). Scientific empathy discovered in scientists' problem-solving process. Journal of the Korean Association for Research in Science Education, 39(2), 249-261.
  41. Yang, H., & Kang, S. (2020). Exploring the korean adolescent empathy using the interpersonal reactivity index (IRI). Asia Pacific Educ. Rev., (21), 339-349.
  42. Yang, H., Anderson, D., & Kang, S. (2023). An instrument for measuring scientific empathy in students' disciplinary engagement: The Scientific Empathy Index. Manuscript submitted for publication, Frontier in Education.
  43. Yerrick, R., & Roth, W. M. (2005). Introduction: The role of language in science learning and teaching. Establishing scientific classroom discourse communities: Multiple voices of teaching and learning research, 1-18.
  44. Yoon, J., Jo, T. J., & Kang, S. J. (2020). A study on the possibility of the relationship among group creativity, empathy, and scientific inquiry ability of elementary school students. International Journal of Science Education, 42(13), 2113-2125.
  45. Yrjonsuuri, V., Kangas, K., Hakkarainen, K., & Seitamaa-Hakkarainen, P. (2019). The roles of material prototyping in collaborative design process at an elementary school. Design and Technology Education.
  46. Zaki, J. (2014). Empathy: A motivated account. Psychological Bulletin, 140(6), 1608.
  47. Zaki, J., & Ochsner, K. (2016). Empathy. In Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (Eds.). Handbook of emotions, pp 871-884. New York : Guilford Press.
  48. Zeyer, A., & Dillon, J. (2019). The role of empathy for learning in complex science| environment| health contexts. International Journal of Science Education, 41(3), 297-315.