Acknowledgement
The authors wish to thank the editor and the referees for their useful comments and suggestions.
References
- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66(2) (2014), 223-234.
- R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79.
- J. Ali and F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation , J. Nonlinear Convex Anal., 21 (2020), 2151-2163.
- K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74(13) (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
- V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpath. J. Math., 19 (2003), 7-22.
- L. Cadariu, L. Gavruta and P. Gavruta, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., 6(1) (2012), 126-139. https://doi.org/10.2298/AADM120309007C
- E.O. Effanga, J.A. Ugboh, E.I. Enang and B.E.A. Eno, A tool for constructing pair-wise balanced incomplete block design, Journal of Modern Mathematics and Statistics, 3(4) (2009), 69-72.
- J. Garc'ia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375(1) (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069
- K. Goebel and S. Reich, Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker Inc, New York, 1984.
- S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59(1) (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
- M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1) (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
- A.E. Ofem, J.A. Abuchu, R. George, G.C. Ugwunnadi and O.K. Narain, Some new results on convergence, weak w2-stability and data dependence of two multivalued almost contractive mappings in hyperbolic spaces, Mathematics, 10 (20) (2022), 3720, https://doi.org/10.3390/math10203720.
- A.E. Ofem and D.I. Igbokwe, A New Faster Four step Iterative Algorithm for Suzuki Generalized Nonexpansive Mappings with an Application, Adv. Theory Nonlinear Anal. Appl., 5(3) (2021), 482-506.
- A.E. Ofem, H. Isik, F. Ali and J. Ahmad, A new iterative approximation scheme for Reich-Suzuki type nonexpansive operators with an application, J. Ineq. Appl., 2022 (28) (2022), doi.org/101186/s13660-022-02762-8. 101186/s13660-022-02762-8
- A.E. Ofem, H. Isik, G.C. Ugwunnadi, R. George and O.K. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8(7) (2023), 14919-14950. https://doi.org/10.3934/math.2023762
- A.E. Ofem, A.A. Mebawondu, G.C. Ugwunnadi, H. Isik and O.K. Narain, A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications, J. Ineq. Appl., 2023(73) (2023), https://doi.org/10.1186/s13660-023-02981-7.
- A.E. Ofem, M.O. Udo, O. Joseph, R. George and C.F. Chikwe, Convergence Analysis of a New Implicit Iterative Scheme and Its Application to Delay Caputo Fractional Differential Equations, Fractal and Fractional, 7(3) (2023), 212.
- G.A. Okeke, Convergence analysis of the PicardIshikawa hybrid iterative process with applications, Afrika Matematika, 30 (2019), 817-835, https://doi.org/10.1007/s13370-019-00686-z.
- G.A. Okeke, A.E. Ofem, T. Abdeljawad, M.A. Alqudah and A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8(1) (2023), 102-124, DOI: 10.3934/math.2023005.
- R. Pandey, R. Pant, V. Rakocevic and R. Shukla, Approximating Fixed Points of a General Class of Nonexpansive Mappings in Banach Spaces with Applications, Results Math., 74(7), doi.org/10.1007/s00025-018-0930-6.
- R. Pant and R. Pandey, Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topology, 20 (2019), 281-295. https://doi.org/10.4995/agt.2019.11057
- D. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38(2) (2017), 248-266. https://doi.org/10.1080/01630563.2016.1276075
- S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558. https://doi.org/10.1016/0362-546X(90)90058-O
- J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43(1) (1991), 153-159. https://doi.org/10.1017/S0004972700028884
- H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mapping, Proc. Amer. Math. Soc., 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
- S.M. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., (2008), doi:10.1155/2008/242916.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
- B.S. Thakurr, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275(2016), 1088-1095.
- K. Ullah and M. Arshad, Numerical Reckoning Fixed Points for Suzuki's Generalized Nonexpansive Mappings via New Iteration Process, Filomat, 32(1) (2018), 187-196. https://doi.org/10.2298/FIL1801187U
- K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Top. Alg., 7(2) (2018), 87-100.
- A.M. Wazwaz, Application of integral Equations, In: Linear and Nonlinear Equations, Springer, Berlin, Heidelberg, 2011, Doi:10.1007/978-3-642-21449-318.