DOI QR코드

DOI QR Code

SOLUTION OF A NONLINEAR DELAY INTEGRAL EQUATION VIA A FASTER ITERATIVE METHOD

  • Received : 2023.07.15
  • Accepted : 2023.09.08
  • Published : 2024.03.15

Abstract

In this article, we study the Picard-Ishikawa iterative method for approximating the fixed point of generalized α-Reich-Suzuki nonexpanisive mappings. The weak and strong convergence theorems of the considered method are established with mild assumptions. Numerical example is provided to illustrate the computational efficiency of the studied method. We apply our results to the solution of a nonlinear delay integral equation. The results in this article are improvements of well-known results.

Keywords

Acknowledgement

The authors wish to thank the editor and the referees for their useful comments and suggestions.

References

  1. M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66(2) (2014), 223-234.
  2. R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79.
  3. J. Ali and F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation , J. Nonlinear Convex Anal., 21 (2020), 2151-2163.
  4. K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74(13) (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
  5. V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpath. J. Math., 19 (2003), 7-22.
  6. L. Cadariu, L. Gavruta and P. Gavruta, Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., 6(1) (2012), 126-139. https://doi.org/10.2298/AADM120309007C
  7. E.O. Effanga, J.A. Ugboh, E.I. Enang and B.E.A. Eno, A tool for constructing pair-wise balanced incomplete block design, Journal of Modern Mathematics and Statistics, 3(4) (2009), 69-72.
  8. J. Garc'ia-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375(1) (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069
  9. K. Goebel and S. Reich, Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker Inc, New York, 1984.
  10. S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59(1) (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
  11. M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1) (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
  12. A.E. Ofem, J.A. Abuchu, R. George, G.C. Ugwunnadi and O.K. Narain, Some new results on convergence, weak w2-stability and data dependence of two multivalued almost contractive mappings in hyperbolic spaces, Mathematics, 10 (20) (2022), 3720, https://doi.org/10.3390/math10203720.
  13. A.E. Ofem and D.I. Igbokwe, A New Faster Four step Iterative Algorithm for Suzuki Generalized Nonexpansive Mappings with an Application, Adv. Theory Nonlinear Anal. Appl., 5(3) (2021), 482-506.
  14. A.E. Ofem, H. Isik, F. Ali and J. Ahmad, A new iterative approximation scheme for Reich-Suzuki type nonexpansive operators with an application, J. Ineq. Appl., 2022 (28) (2022), doi.org/101186/s13660-022-02762-8. 101186/s13660-022-02762-8
  15. A.E. Ofem, H. Isik, G.C. Ugwunnadi, R. George and O.K. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8(7) (2023), 14919-14950. https://doi.org/10.3934/math.2023762
  16. A.E. Ofem, A.A. Mebawondu, G.C. Ugwunnadi, H. Isik and O.K. Narain, A modified subgradient extragradient algorithm-type for solving quasimonotone variational inequality problems with applications, J. Ineq. Appl., 2023(73) (2023), https://doi.org/10.1186/s13660-023-02981-7.
  17. A.E. Ofem, M.O. Udo, O. Joseph, R. George and C.F. Chikwe, Convergence Analysis of a New Implicit Iterative Scheme and Its Application to Delay Caputo Fractional Differential Equations, Fractal and Fractional, 7(3) (2023), 212.
  18. G.A. Okeke, Convergence analysis of the PicardIshikawa hybrid iterative process with applications, Afrika Matematika, 30 (2019), 817-835, https://doi.org/10.1007/s13370-019-00686-z.
  19. G.A. Okeke, A.E. Ofem, T. Abdeljawad, M.A. Alqudah and A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8(1) (2023), 102-124, DOI: 10.3934/math.2023005.
  20. R. Pandey, R. Pant, V. Rakocevic and R. Shukla, Approximating Fixed Points of a General Class of Nonexpansive Mappings in Banach Spaces with Applications, Results Math., 74(7), doi.org/10.1007/s00025-018-0930-6.
  21. R. Pant and R. Pandey, Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topology, 20 (2019), 281-295. https://doi.org/10.4995/agt.2019.11057
  22. D. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38(2) (2017), 248-266. https://doi.org/10.1080/01630563.2016.1276075
  23. S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558. https://doi.org/10.1016/0362-546X(90)90058-O
  24. J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43(1) (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  25. H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mapping, Proc. Amer. Math. Soc., 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  26. S.M. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., (2008), doi:10.1155/2008/242916.
  27. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
  28. B.S. Thakurr, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275(2016), 1088-1095.
  29. K. Ullah and M. Arshad, Numerical Reckoning Fixed Points for Suzuki's Generalized Nonexpansive Mappings via New Iteration Process, Filomat, 32(1) (2018), 187-196. https://doi.org/10.2298/FIL1801187U
  30. K. Ullah and M. Arshad, New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Top. Alg., 7(2) (2018), 87-100.
  31. A.M. Wazwaz, Application of integral Equations, In: Linear and Nonlinear Equations, Springer, Berlin, Heidelberg, 2011, Doi:10.1007/978-3-642-21449-318.