DOI QR코드

DOI QR Code

ANALYSIS OF EXISTENCE AND STABILITY RESULTS FOR FRACTIONAL IMPULSIVE 𝔍-HILFER FREDHOLM-VOLTERRA MODELS

  • Received : 2023.07.12
  • Accepted : 2023.09.10
  • Published : 2024.03.15

Abstract

In this paper, we investigate the suitable conditions for the existence results for a class of 𝔍-Hilfer fractional nonlinear Fredholm-Volterra models with new conditions. The findings are based on Banach contraction principle and Schauder's fixed point theorem. Also, the generalized Hyers-Ulam stability and generalized Hyers-Ulam-Rassias stability for solutions of the given problem are provided.

Keywords

References

  1. M. Alesemi, N. Iqbal and A.A. Hamoud, The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022 (2022), 1-13. https://doi.org/10.1155/2022/2431533
  2. S. Asawasamrit, Y. Thadang, S.K. Ntouyas and J. Tariboon, Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions, Axioms, 10 (2021), 130.
  3. K. Balachandran, S. Kiruthika and J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commu. Nonlinear Sci. Numer. Simu., 16 (2011), 1970-1977. https://doi.org/10.1016/j.cnsns.2010.08.005
  4. K. Balachandran and K. Uchiyama, Existence of local solutions of quasilinear integrodifferential equations in Banach spaces, Applicab1e Anal., 76(1-2) (2000), 1-8. https://doi.org/10.1080/00036810008840861
  5. K.M. Furati, M.D. Kassim and N.E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative , Comput. Math. Appl., 64 (2012), 1616-1626. https://doi.org/10.1016/j.camwa.2012.01.009
  6. A. Hamoud, M.SH. Bani Issa and K. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Funct. Anal. Appl., 23(4) (2018), 797-805. https://doi.org/10.7862/rf.2018.9
  7. A. Hamoud, A. Khandagale, R. Shah and K. Ghadle, Some new results on Hadamard neutral fractional nonlinear Volterra-Fredholm integro-differential equations, Discontinuity, Nonlinearity, and Complexity, 12(4) (2023) 893-903. https://doi.org/10.5890/DNC.2023.12.013
  8. R. Hilfer, Applications of fractional Calculus in Physics, World scientific, Singapore, 1999.
  9. R.W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23(5) (2012), 1-14. https://doi.org/10.1142/S0129167X12500565
  10. R.W. Ibrahim, Stability of sequential fractional differential equation, Appl. Comput. Math., 14(2) (2015), 19-41.
  11. A.G. Ibrahim and A.A. Elmandouh, Existence and stability of solutions of ?????-Hilfer fractional functional differential inclusions with non-instantaneous impulses, AIMS Mathematics, 6 (2021), 10802-10832. https://doi.org/10.3934/math.2021628
  12. K. Ivaz, I. Alasadi and A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG Int. J. Appl. Math., 52(2) (2022), 426-431.
  13. T. Jankowski, Delay integro-differential equations of mixed type in Banach spaces, Glasnik Math., 37(57) (2002), 321-330.
  14. M.D. Kassim and N.-E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abst. Appl. Anal., Article ID 605029 (2014), 1-7. https://doi.org/10.1155/2013/605029
  15. U.N. Katugampola, Existence and uniqueness results for a class of generalized fractional differential equations, Bull. Math. Anal. Appl., arXiv:1411.5229, v1 (2014).
  16. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  17. C. Kou, J. Liu and Y. Ye, Existence and uniqueness of solutions for the Cauchy-Type problems of fractional differential equations, Discrete Dyna. Nature and Soc., Article ID 142175 (2010), 15pages.
  18. T. Li, A. Zada and S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 9 (2016), 2070-2075. https://doi.org/10.22436/jnsa.009.05.12
  19. C. Nuchpong, S.K. Ntouyas and J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18 (2020), 1879-1894. https://doi.org/10.1515/math-2020-0122
  20. D.S. Oliveira and E. Capelas de Oliveira, Hilfer-Katugampola fractional derivative, Mathematics, Cornell University, arxiv:1705.07733v1, (2017).
  21. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  22. A. Salim, M. Benchohra, J.R. Graef and J.E. Lazreg, Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract., 5 (2021), 1-21. https://doi.org/10.3390/fractalfract5010001
  23. A. Sharif and A. Hamoud, On ψ-Caputo fractional nonlinear Volterra-Fredholm integrodifferential equations, Discontinuity, Nonlinearity, and Complexity, 11(1) (2022), 97-106. https://doi.org/10.5890/DNC.2022.03.008
  24. A. Sharif, A. Hamoud and K.P. Ghadle, On existence and uniqueness of solutions to a class of fractional Volterra-Fredholm initial value problems, Discontinuity, Nonlinearity, and Complexity, 12(4) (2023) 905-916. https://doi.org/10.5890/DNC.2023.12.014
  25. J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ?????-Hilfer fractional derivative, Mathematics, Cornell University, arXiv:1704.08186, (2017).
  26. J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Elect. J. Qualitative Theory Diff. Equ., 63 (2011), 1-10. https://doi.org/10.14232/ejqtde.2011.1.63
  27. J. Wang and Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization: A Journal of Mathematical Programming and Operations Research, 63(8) (2014), 1181-1190. https://doi.org/10.1080/02331934.2014.906597
  28. H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  https://doi.org/10.1016/j.jmaa.2006.05.061