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Abstract. In this article, we study the Picard-Ishikawa iterative method for approximating

the fixed point of generalized α-Reich-Suzuki nonexpanisive mappings. The weak and strong
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1. Introduction

In this article, let N denote the set of all positive integers, R the set of all real
numbers and C the set of all complex numbers. Let G be a nonempty subset of
a Banach space M. Then, a self-mapping L : G → G is said to be nonexpansive
if ‖Lu−Lv‖ ≤ ‖u− v‖ for all u, v ∈ G and it is said to be quasi-nonexpansive
if ‖Lu− u∗‖ ≤ ‖u− u∗‖ for all u ∈ G and u∗ ∈ F (L) = {u∗ ∈ G : u∗ = Lu∗},
the set of all fixed points of L.

In the past few years, the fixed point theory for nonexpansive mappings
has attracted several authors as a results of their vast applications in integral
equation, differential equation, convex optimization and control theory, signal
processing, game theory and many more. Several extensions and generaliza-
tions of the class of nonexpansive mappings have been studied in the past two
decades (see [4, 8, 12, 13, 14, 15, 16, 17, 19, 21, 22, 27] and the references
therein).

One of these important generalizations of the class of nonexpansive map-
pings known as Suzuki generalized nonexpansive mappings was given by Suzuki
[27]. This class of mappings are also known as mappings satisfying the condi-
tion (C). In [4], Aoyama and Kohsaka introduced the class nonexpansive-type
mappings called α-nonexpansive mappings.

In [22], Pant and Shukla considered another generalized nonexpansive-type
mapping called generalized α-nonexpansive mappings. The authors showed
that this class of mappings is more general than the class of mappings satisfy-
ing the condition (C). In [21], Pant and Pandey considered the Reich-Suzuki
nonexpansive mappings. The authors proved that this class of mappings is
more general than the class of mappings satisfying the condition (C). Further-
more, they proved some existence and fixed point results for such mappings.

Very recently, Pandy et al. [20] combined to the classes of generalized α-
nonexpansive mappings and Reich-Suzuki nonexpansive mappings to defined
a new class of mappings as follows:

Definition 1.1. Let L be a self mapping defined on a nonempty subset G
of a Banach space M. Then L is said to be a generalized α-Reich-Suzuki
nonexpansive mapping if for all u, v ∈ G, there exists α ∈ (0, 1] such that

1

2
‖u− Lu‖ ≤ ‖u− v‖ implies ‖Lu− Lv‖ ≤ max{Υ(u, v),Ω(u, v)},

where

Υ(u, v) = α‖u− Lv‖+ α‖v − Lu‖+ (1− 2α)‖u− v‖
and

Ω(u, v) = α‖u− Lu‖+ α‖v − Lv‖+ (1− 2α)‖u− v‖.
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For Banach contraction principle, it is well known that the Picard iterative
algorithm approximate the fixed points of contraction mappings, but fails to
converge to the fixed point of nonexpansive mappings even when their fixed
points exist. This posed a serious problem in the field of nonlinear analysis
and the problem captured the interest of several authors.

For some years now, several iterative methods have been developed to ap-
proximate the fixed points of nonexpansive mappings and other general classes
of mappings. Some of these iterative methods are: Abbas [1], Agarwal et al.
[2], Ali et al. [3], Ishikawa [10], Noor [11], Thakur [28] and Ullah et al. ([29],
[30]) iterative algorithms.

Very recently, in [18], Okeke introduced the Picard-Ishikawa iterative method
as follows: 

u0 ∈ G,
wm = (1− βm)um + βmLum,
vm = (1− αm)um + αmLwm,
um+1 = Lvm,

m ∈ N, (1.1)

where the sequences {αm}, {βm} ⊂ (0, 1). The author showed that (1.1) has
a better rate of convergence than most leading iterative algorithms in the
literature.

Motivated by the above results, in this article, we prove the weak and strong
convergence results of (1.1) for generalized α-Reich-Suzuki nonexpansive map-
pings. Numerical example is provided to illustrate the computational efficiency
of the studied method. Furthermore, We apply our results to the solution of
a nonlinear delay integral equations.

2. Preliminaries

Definition 2.1. A Banach spaceM is said to be satisfied the Opial’s condition
if for any sequence {um} in M such that um ⇀ u ∈M implies

lim sup
m→∞

‖um − u‖ < lim sup
m→∞

‖um − v‖, ∀ v ∈M, v 6= u.

Definition 2.2. A Banach spaceM is said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 with u, v ∈ M satisfying ‖u‖ ≤ 1, ‖v‖ ≤ 1 and
‖u− v‖ > ε such that ∥∥∥∥u+ v

2

∥∥∥∥ < 1− δ.
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Let M be a Banach space and G a nonempty closed convex subset of M.
Let {um} be a bounded sequence in M. For u ∈M, we set

r(u, {um}) := lim sup
m→∞

‖um − u‖.

The asymptotic radius of {um} relative to G is defined by

r(G, {um}) := inf{r(u, {um}) : u ∈ G}.
The asymptotic center of {um} relative to G is given as:

A(G, {um}) := {u ∈ G : r(u, {um}) = r(G, {um})}.
It is well known that A(G, {um}) consist of exactly one point in a uniformly

convex Banach space.

Let L : G → G be a nonlinear operator such that F (L) 6= ∅. Then I − L is
called demiclosed at zero if for any um ∈ G, um ⇀ u and (I −L)um → 0, then
u ∈ F (L).

Lemma 2.3. ([26]) Let {φm} and {σm} be sequences in [0,∞) such that

φm+1 ≤ (1− λm)φm + λmσm,

where λm ∈ (0, 1) with
∞∑
m=0

λm =∞ and σm ≥ 0 for all m ∈ N. Then

0 ≤ lim sup
m→∞

φm ≤ lim sup
m→∞

σm.

Definition 2.4. ([25]) A self-mapping L defined on G is said to be satisfied
the condition (I), if a nondecreasing function g : [0,∞) → [0,∞) exists with
g(0) = 0 and g(s) > 0 for all s > 0 such that

‖u− Lu‖ ≥ g(d(u, F (L))))

for all u ∈ G, where d(f, F (L)) = infu∗∈F (L) ‖u− u∗‖.

Lemma 2.5. ([24]) Let {µm} be any sequence that satisfies 0 < u ≤ µm ≤ v <
1 for all m ≥ 1 and {um} and {vm} be any sequences in a uniformly convex
Banach space M such that lim sup

m→∞
‖um‖ ≤ w, lim sup

m→∞
‖vm‖ ≤ w and

lim sup
m→∞

‖µmum + (1− µm)vm‖ = w

hold for some w ≥ 0. Then lim
m→∞

‖um − vm‖ = 0.

Proposition 2.6. ([22]) LetM be a Banach space and G be a nonempty subset
of M. Then we have the followings:

(i) If L fulfills condition (C), then L is generalized α-Reich-Suzuki non-
expansive mapping.
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(ii) If L is a generalized α-Reich-Suzuki nonexpansive mapping such that
F (L) 6= ∅, then L is quasi-nonexpansive.

(iii) If L is a generalized α-Reich-Suzuki nonexpansive mapping, then F (L)
is closed. Moreover, ifM is strictly convex and G is convex, then F (L)
is also convex.

(iv) If L is a generalized α-Reich-Suzuki nonexpansive mapping, then we
have

‖u− Lv‖ ≤
(

3 + α

1− α

)
‖u− Lu‖+ ‖u− v‖, ∀ u, v ∈ G. (2.1)

3. Weak and strong convergence theorems

In this part of the article, several weak and strong onvergence theorems
will be stated and proved using the Picard-Ishikawa iterative method (1.1)
for generalized α-Reich-Suzuki nonexpansive mappings. Further, we provide
some novel numerical example. The provided example will be used to compare
the computational efficiency of (1.1) with some well-known iterative methods
in the literature.

Theorem 3.1. Let G be a nonempty closed convex subset of a Banach space
M. Let L : G → G be a generalized α-Reich-Suzuki nonexpansive mapping.
If {um} is the sequence defined by (1.1), then lim

m→∞
‖um − u∗‖ exists for all

u∗ ∈ F (L).

Proof. If u∗ ∈ F (L), then by Proposition 2.6(ii) and (1.1), we get

‖wm − u∗‖ = ‖(1− βm)um + βmLum − u∗‖
≤ (1− βm)‖um − u∗‖+ βm‖Lum − u∗‖
≤ (1− γm)‖um − u∗‖+ γm‖um − u∗‖
≤ ‖um − u∗‖. (3.1)

Again, by (3.1), we have

‖vm − u∗‖ = ‖(1− αm)um + αmLwm − u∗‖
≤ (1− αm)‖um − u∗‖+ αm‖Lwm − u∗‖
≤ (1− αm)‖um − u∗‖+ αm‖wm − u∗‖
≤ ‖um − u∗‖. (3.2)

From (3.2), we have

‖um+1 − u∗‖ = ‖Lvm − u∗‖
≤ ‖vm − u∗‖
≤ ‖um − u∗‖, (3.3)
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this means that the sequence {‖um− u∗‖} is bounded and decreasing. There-
fore, lim

m→∞
‖um − `‖ exists for all u∗ ∈ F (L). �

Theorem 3.2. Let L, G, M and {um} be defined as given in Theorem 3.1.
Then, F (L) 6= ∅ if and only if the sequence {um} is bounded and

lim
m→∞

‖Lum − um‖ = 0.

Proof. We have shown in Theorem 3.1 that {um} is a bounded sequence and
lim
m→∞

‖um − u∗‖ exists for any u∗ ∈ F (L). Set

lim
m→∞

‖um − u∗‖ = `, (3.4)

it follows from (3.1) and (3.4) that

lim sup
m→∞

‖wm − u∗‖ ≤ lim sup
m→∞

‖um − u∗‖ = `. (3.5)

By Proposition 2.6(ii), we have

lim sup
m→∞

‖Lum − u∗‖ ≤ lim sup
m→∞

‖um − u∗‖ = `. (3.6)

Now, from (1.1), we get

‖um+1 − u∗‖ = ‖Lum − u∗‖
≤ ‖vm − u∗‖
= ‖(1− αm)um + αmLwm − u∗‖
≤ (1− αm)‖um − u∗‖+ αm‖Lwm − u∗‖
≤ (1− αm)‖um − u∗‖+ αm‖wm − u∗‖
= ‖um − u∗‖ − αm‖um − u∗‖+ αm‖wm − u∗‖,

this implies that

‖um+1 − u∗‖ − ‖um − u∗‖
αm

≤ ‖wm − u∗‖ − ‖um − u∗‖.

Therefore,

‖um+1 − u∗‖ − ‖um − u∗‖ ≤
‖um+1 − u∗‖ − ‖um − u∗‖

αm
≤ ‖wm − u∗‖ − ‖um − u∗‖,

this gives

‖um+1 − u∗‖ ≤ ‖wm − u∗‖. (3.7)

Therefore,

` ≤ lim inf
m→∞

‖wm − u∗‖. (3.8)
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By (3.5) and (3.8), we obtain

` = lim
m→∞

‖wm − u∗‖

= lim
m→∞

‖(1− αm)um + αmLum − u∗‖

= lim
m→∞

‖αm(Lum − u∗) + (1− αm)(um − u∗)‖. (3.9)

Combining Lemma 2.5, (3.4), (3.6) and (3.9), then we get

lim
m→∞

‖Lum − um‖ = 0.

Let u∗ ∈ A(G, {um}). Then

r({um},Lu∗) = lim sup
m→∞

‖um − Lu∗‖

≤ lim sup
m→∞

{(
3 + α

1− α

)
‖um − Lum‖+ ‖Lum − `‖

}

= lim sup
m→∞

(
3 + α

1− α

)
‖um − Lum‖+ lim sup

m→∞
‖Lum − u∗‖

≤ lim sup
m→∞

‖um − u∗‖

= r({um}, u∗). (3.10)

It follows that Lu∗ ∈ A(G, {um}). By uniformly convexity of M, it implies
that A(G, {um}) is a singleton set and thus, one get Lu∗ = u∗. Therefore,
F (L) 6= ∅.

The converse part is trivial. �

Theorem 3.3. If L, G,M and {um} are same as in Theorem 3.1 with F (L) 6=
∅. If the Opial’s property is satisfied by M, then {um} weakly converges to a
point in F (L).

Proof. Since F (L) 6= ∅, it follows from Theorem 3.2 and Theorem 3.1 that
lim
m→∞

‖um − u∗‖ exists and lim
m→∞

‖Lum − um‖ = 0.

Now, we show that {um} has just a one weakly sub-sequential limit in F (L).
Assume that k and h are two weak sub-sequential limits of {umj} and {umk

},
respectively. From Theorem 3.2 and the demiclosedness of (I − L) at 0, we
know that (I − L)k = 0. Thus, Lk = k and from similar approach, we have
Lh = h.

Next, we prove uniqueness. Assume k 6= h, then by Opial’s condition, we
get
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lim
m→∞

‖um − k‖ = lim
mj→∞

‖umj − k‖

< lim
mj→∞

‖umj − h‖

= lim
m→∞

‖um − h‖

= lim
mk→∞

‖umk
− h‖

< lim
mk→∞

‖umk
− k‖

= lim
m→∞

‖um − k‖.

This is a contraction, therefore, k = h. Thus, {um} weakly converges to an
element in F (L). �

Theorem 3.4. Let L, G, M and {um} be the same as in Theorem 3.1 with
F (L) 6= ∅. Then, {um} converges strongly to an element of F (L) if and only
if lim
m→∞

d(um, F (L) = 0, where d(um, F (L)) = inf{‖um − u∗‖ : u∗ ∈ F (L)}.

Proof. The necessity is not hard to show, so we will omit it. Next, we show
the converse case. Let u∗ be any fixed point of L. Then lim inf d(um, F (L)) =
0. From Theorem 3.1, we knows that lim

m→∞
‖um − u∗‖ exists for each u∗ ∈

F (L) and this implies that lim inf
m→∞

d(um, F (L)) = 0. Next, we claim that the

sequence {um} is Cauchy in G. Due to lim inf
m→∞

d(um, F (L)) = 0 in as much as

for any ℘ > 0, there exists a constant m0 ∈ N such that

d(um, F (L)) <
℘

2
and

inf{‖um − u∗‖ : u∗ ∈ F (L)} < ℘

2
for all m ≥ m0. Therefore, inf{‖um0 − u∗‖ : u∗ ∈ F (L)} < ℘

2 . Hence, there
exists u∗ ∈ F (L) such that

‖um0 − u∗‖ <
℘

2
.

For n,m ≥ m0, we have

‖um+n − um‖ ≤ ‖um+n − u∗‖+ ‖um − u∗‖
≤ ‖um0 − u∗‖+ ‖um0 − u∗‖
= 2‖um0 − u∗‖
< ℘.

It follows that {um} is a Cauchy sequence in G. From the completeness of G,
we get lim

m→∞
um = p for some p ∈ G. Further, lim

m→∞
d(um, F (L)) = 0 shows

that p ∈ F (L). This completes the proof. �
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Theorem 3.5. Let L, G, M and {um} be the same as in Theorem 3.1 with
F (L) 6= ∅. Suppose G is compact. Then {um} strongly converges to a fixed
point of L.

Proof. Owing to the hypothesis that F (L) 6= ∅, we know from Theorem 3.2
that lim

m→∞
‖Lum − um‖ = 0. Since G compact, one can have a subsequence

{umj} of {um} with lim
m→∞

umj → u∗ ∈ G. From Proposition 2.6, we obtain

‖umj − Lu∗‖ ≤
(

3 + α

1− α

)
‖Lumj − umj‖+ ‖umj − u∗‖.

On taking j →∞, Lu∗ = u∗, that is, u∗ ∈ F (L). By Theorem 3.1, lim
m→∞

‖um−
u∗‖ exists for any u∗ ∈ F (L) and so the sequence {um} strongly converges to
u∗. �

Theorem 3.6. Let L, G, M and {um} be the same as in Theorem 3.1 with
F (L) 6= ∅. If L satisfies condition (I), then {um} strongly converges to an
element of F (L).

Proof. Due to Theorem 3.2, we obtain

lim
m→∞

‖Lum − um‖ = 0. (3.11)

From (3.11) and condition (I) in Definition 2.4, we gets

lim
m→∞

g(d(um, F (L))) ≤ lim
m→∞

‖Lum − um‖ = 0, (3.12)

this implies that lim
m→∞

g(d(um, F (L))) = 0. We know that g is a nondecreasing

self-function defined on [0,∞) with g(0) = 0, g(s) > 0 for all s ∈ (0,∞),
therefore, we get

lim
m→∞

d(um, F (L)) = 0. (3.13)

By Theorem 3.4, {um} strongly converges an element of F (L). �

Next we present an example of a mapping that generalized α-Reich-Suzuki
nonexpansive but does not satisfy condition (C).

Example 3.7. Let M = R with the usual norm and G = [6, 10]. Define
L : G → G by

Lu =

{
u+42
7 , if u < 10,

6, if u = 10,

for all u ∈ L.
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(1) Let u = 9 and v = 10. Then we have

1

2
‖u− Lu‖ =

1

2
|g − Lu| = 6

7
< 1 = |u− v|
= ‖u− v‖.

But

‖Lu− Lv‖ = |Lu− Lv| = 9

7
> 1 = |u− v|
= ‖u− v‖.

Therefore, L does not satisfy the condition (C).
(2) We show now that L is a generalized α-Reich-Suzuki nonexpansive

mappings. For this, we take α = 1
3 and consider the following cases:

Case I: Let u, v < 10. Then

Υ(g, h) = α‖u− Lu‖+ α‖v − Lv‖+ (1− 2α)‖u− v‖

=
1

3

∣∣∣∣u− (u+ 42

7

)∣∣∣∣+
1

3

∣∣∣∣v − (v + 42

7

)∣∣∣∣+
1

3
|u− v|

=
1

3

∣∣∣∣6u− 42

7

∣∣∣∣+
1

3

∣∣∣∣6v − 42

7

∣∣∣∣+
1

3
|u− v|

≥ 1

7
|u− v| = ‖Lu− Lv‖.

Also,

Ω(u, v) = α‖u− Lv‖+ α‖v − Lu‖+ (1− 2α)‖u− v‖

=
1

3

∣∣∣∣u− (v + 42

7

)∣∣∣∣+
1

3

∣∣∣∣v − (u+ 42

7

)∣∣∣∣+
1

3
|u− v|

≥ 1

7
|u− v| = ‖Lu− Lv‖.

Case II: Let u < 10 and v = 10. Then we have

Υ(u, v) = α‖u− Lu‖+ α‖v − Lv‖+ (1− 2α)‖u− v‖

=
1

3

∣∣∣∣u− (u+ 42

7

)∣∣∣∣+
1

3
|10− 6|+ 1

3
|u− 10|

=
1

3

∣∣∣∣6u− 42

7

∣∣∣∣+
4

3
+

1

3
|u− 10|

≥ 1

7
|u| = ‖Lu− Lv‖.



Solution of a nonlinear delay integral equation via a faster iterative method 189

Also,

Ω(u, v) = α‖u− Lv‖+ α‖v − Lu‖+ (1− 2α)‖u− v‖

=
1

3
|u− 6|+ 1

3

∣∣∣∣10−
(
u+ 42

7

)∣∣∣∣+
1

3
|u− 10|

=
1

3
|u− 6|+ 1

3

∣∣∣∣28− u
7

∣∣∣∣+
1

3
|u− 10|

≥ 4

3
+

1

3

∣∣∣∣28− g
7

∣∣∣∣
≥ 1

7
|u| = ‖Lu− Lv‖.

Case III: Let u = 10 and v < 10. Then we obtain

Υ(u, v) = α‖u− Lu‖+ α‖v − Lv‖+ (1− 2α)‖u− v‖

=
1

3
|10− 6|+ 1

3

∣∣∣∣v − (v + 42

7

)∣∣∣∣+
1

3
|10− v|

=
4

3
+

∣∣∣∣6v − 42

7

∣∣∣∣+
1

3
|10− v|

≥ 1

7
|v| = ‖Lu− Lv‖.

Also,

Ω(u, v) = α‖u− Lv‖+ α‖v − Lu‖+ (1− 2α)‖u− v‖

=
1

3

∣∣∣∣10−
(
v + 42

7

)∣∣∣∣+
1

3
|v − 6|+ 1

3
|10− v|

=
1

3

∣∣∣∣28− v
7

∣∣∣∣+
1

3
|v − 6|+ 1

3
|10− v|

≥ 1

3

∣∣∣∣28− v
7

∣∣∣∣+
4

3

≥ 1

7
|v| = ‖Lu− Lv‖.

Case IV: Let u = v = 10. Then we obtain

Υ(u, v) = α‖u− Lu‖+ α‖v − Lv‖+ (1− 2α)‖u− v‖
≥ 0 = ‖Lu− Lv‖.

Also,

Ω(u, v) = α‖u− Lv‖+ α‖v − Lu‖+ (1− 2α)‖u− v‖
≥ 0 = ‖Lu− Lv‖.
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From all the cases above, ‖Lu − Lv‖ ≤ max{Υ(u, v),Ω(u, v)} for α = 1
3 .

Hence, L is a generalized α-Reich-Suzuki nonexpansive mapping with fixed
point u∗ = 7.

For parameters αm = βm = m
m+10 , for all m ∈ N and starting point u1 = 8,

then with the aid of MATLAB R2015a, we obtain the following Tables (3)–(3).
Obviously, from Tables 3–3, it is evident that (1.1) converges faster to 7 than
all other considered iterative algorithms.

Table 1. Convergence behavior of various iterative algorithms.
gm S-Iteration Abbas-Iteration CR-Iteration S∗-Iteration Picard-Ishikawa

g1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g2 7.1418451678 7.0303964883 7.0188179168 7.0026882738 7.0003541140
g3 7.0201200516 7.0009239465 7.0003541140 7.0000072268 7.0000001254
g4 7.0028539321 7.0000280847 7.0000066637 7.0000000194 7.0000000000
g5 7.0004048165 7.0000008537 7.0000001254 7.0000000001 7.0000000000
g6 7.0000574213 7.0000000259 7.0000000024 7.0000000000 7.0000000000
g7 7.0000081449 7.0000000008 7.0000000000 7.0000000000 7.0000000000
g8 7.0000011553 7.0000000000 7.0000000000 7.0000000000 7.0000000000
g9 7.0000001639 7.0000000000 7.0000000000 7.0000000000 7.0000000000
g10 7.0000000232 7.0000000000 7.0000000000 7.0000000000 7.0000000000

Table 2. Convergence behavior of various iterative algorithms.
gm Mann Ishakawa Picard-Mann Thakur Picard-Ishikawa

g1 8.0000000000 8.0000000000 8.0000000000 8.0000000000 8.0000000000
g2 7.9210528045 7.1317254174 7.0202635954 7.0173515856 7.0003541140
g3 7.8483382687 7.0173515856 7.0004106133 7.0003010775 7.0000001254
g4 7.7813643415 7.0022856449 7.0000083205 7.0000052242 7.0000000000
g5 7.7196778181 7.0003010775 7.0000001686 7.0000000906 7.0000000000
g6 7.6628612727 7.0000396596 7.0000000034 7.0000000016 7.0000000000
g7 7.6105302342 7.0000052242 7.0000000001 7.0000000000 7.0000000000
g8 7.5623305845 7.0000006882 7.0000000000 7.0000000000 7.0000000000
g9 7.5179361619 7.0000000906 7.0000000000 7.0000000000 7.0000000000
g10 7.4770465545 7.0000000119 7.0000000000 7.0000000000 7.0000000000
g11 7.4393850669 7.0000000016 7.0000000000 7.0000000000 7.0000000000
g12 7.4046968481 7.0000000002 7.0000000000 7.0000000000 7.0000000000
g13 7.3727471669 7.0000000000 7.0000000000 7.0000000000 7.0000000000
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4. An application to delay nonlinear integral equations

In this section, we discuss an application to nonlinear Volterra integral
equation with delay. Consider the integral equation:

u(t) = g(t) + λ

∫ t

a
f(t, s, u(s), u(s− τ))ds, t ∈ I = [a, b] (4.1)

with initial function:

u(t) = φ(t), t ∈ [a− τ, a], (4.2)

where φ ∈ C[a− τ, a],R), a, b ∈ R and τ > 0.

Let C[a, b] denote the set all of continuous functions defined on [a, b] en-
dowed with infinity norm ‖u − v‖∞ = max

a≤t≤b
‖u(t) − v(t)‖. It is well known

that (C[a, b],R), ‖ · ‖∞) is a Banach space.

Theorem 4.1. Let A be a nonempty closed compact subset of a Banach space
B = (C([a, b],R), ‖·‖∞). Let {um} be the iterative method (1.1) with αm, βm ∈
(0, 1). Let L : A → A be the operator defined by

Lu(t) = g(t) + λ

∫ t

a
f(t, s, u(s), u(s− τ))ds, t ∈ I = [a, b], λ ≥ 0,

Lu(t) = φ(t), t ∈ [a− τ, a].

Suppose the following assumptions hold:

(a) g : I → R is continuous;
(b) f : I × I × R × R → R is continuous in the sense that there exists a

constant Lf > 0 such that

|f(t, s, u1, u2)− f(t, s, v1, v2)| ≤ Lf (|u1 − v1|+ |u2 − v2|)

for all t, s ∈ I, ui, vi ∈ R (i = 1, 2);
(c) 2λLf (b− a) < 1.

Then, the problem (4.1)-(4.2) has a unique solution, say u∗ ∈ C[a, b]. More-
over, {um} converges strongly to u∗.

Proof. Now, using the contraction principle, we show that L has a unique fixed
point. For u, v ∈ A, we have

|Lu(t)− Lp(t)| = 0, u, v ∈ C([a− τ, a],R), t ∈ [a− τ, b].
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Next, for any t ∈ I, we have

|Lu(t)− Lq(t)|

= |g(t) + λ

∫ t

a
f(t, s, u(s), u(s− τ))ds

− g(t)− λ
∫ t

a
f(t, s, v(s), v(s− τ))ds|

≤ λ
∫ t

a
Lf {|u(s)− v(s)|+ |u(s− τ)− v(s− τ)|} ds

≤ λ
∫ t

a
Lf

{
max

a−τ≤s≤b
|u(s)− v(s)|+ max

a−τ≤s≤b
|u(s− τ)− v(s− τ)|

}
ds

= λ

∫ t

a
Lf {‖u− v‖∞ + ‖u− v‖∞} ds

≤ 2λLf (b− a)‖u− v‖∞.

Therefore,

‖Lu− Lv‖∞ ≤ 2λLf (b− a)‖u− v‖∞.

From condition (c), the operator L is a contraction and using the contraction
principle we deduce that the operator L has a unique fixed point, F (L) = {u∗},
that is, the problem (4.1)-(4.2) has a unique solution u∗ ∈ C[a, b].

Next, we show that {mn} converges strongly to u∗. For u, v ∈ A, we have

|u(t)− Lv(t)|
≤ |u(t)− Lu(t)|+ |Lu(t)− Lv(t)|

= |u(t)− Lu(t)|+ |g(t) + λ

∫ t

a
f(t, s, u(s), u(s− τ))ds

− g(t)− λ
∫ t

a
f(t, s, v(s), v(s− τ))ds|

≤ |u(t)− Lu(t)|+ λ

∫ t

a
Lf {|u(s)− v(s)|+ |u(s− τ)− v(s− τ)|} ds

≤ max
a−τ≤t≤b

|u(t)− Lu(t)|

+ λ

∫ t

a
Lf

{
max

a−τ≤s≤b
|u(s)− v(s)|+ max

a−τ≤s≤b
|u(α(s))− v(α(s))|

}
ds
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≤ max
a−τ≤t≤b

|u(t)− Lu(t)|

+ λ

∫ t

a
Lf

{
max

a−τ≤d1≤b
|u(d1)− v(d1)|+ max

a−τ≤r1≤b
|u(r1)− v(r1)|

}
ds

= ‖u− Lu‖∞ + λ

∫ t

a
Lf {‖u− v‖∞ + ‖v − v‖∞} ds

≤ ‖u− Lu‖∞ + 2λLf (b− a)‖u− v‖∞
≤ ‖u− Lu‖∞ + ‖u− v‖∞.

Therefore,
‖u− Lv‖∞ ≤ ‖u− Lu‖∞ + ‖u− v‖∞. (4.3)

From (4.3), it is clear that L is a mapping satisfying (2.1) with
(
3+α
1−α

)
≥ 1

(hence, it is a generalized α-Reich-Suzuki nonexpansive mapping). Taking
A = G and B = M, then all the assumptions of Theorem 3.5 are satisfied.
Therefore, the sequence {um} defined by the iterative algorithm (1.1) conver-
gence strongly to the unique solution of the problem (4.1)-(4.2). �

5. Conclusion

In this article, we have used the Picard-Ishikawa method (1.1) to approx-
imate the fixed point of the more generalized α-Reich-Suzuki nonexpansive
mappings. We have proved several weak and strong convergence theorems
of the considered method under mild assumptions. We have shown numer-
ically that the studied method has a better rate of convergence than some
well-known methods for generalized α-nonexpansive mappings. We solve a
problem involving nonlinear delay integral equation via Picard-Ishikawa iter-
ative method.

Acknowledgements: The authors wish to thank the editor and the referees
for their useful comments and suggestions.
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