DOI QR코드

DOI QR Code

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode

탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가

  • Min-Jung Song (Department of Nano Convergence Engineering, Seokyeong University)
  • 송민정 (서경대학교 나노융합공학과)
  • Received : 2023.09.06
  • Accepted : 2023.11.14
  • Published : 2024.02.01

Abstract

To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.

웨어러블 디바이스용 유연 전극 소재 개발을 위해 탄소섬유 토우(carbon fibers tow)의 전처리에 따른 전기화학적 특성을 조사하고, 이를 활용하여 포도당을 타겟으로 전기화학적 비효소 센서를 제작하였다. 탄소섬유 토우는 탈사이징(desizing)과 활성화(activation) 공정을 통해 전처리 되었으며, 활성화는 화학적 산화와 전기화학적 산화의 두 가지 방법으로 이루어졌다. 전처리된 샘플은 주사전자 현미경(SEM)을 이용하여 표면 분석되었으며, 전기화학적 특성 및 센싱성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. 탄소섬유 토우는 전처리를 통해 감소된 Ret와 ΔEp, 증가된 Ip 등 향상된 전기화학적 특성을 보였으며, 두 활성화 방법에서는 유사한 전기화학적 특성이 얻어졌다. 본 연구에서는 전기화학센서 적용을 위해 전기화학적으로 활성화된 탄소섬유 토우를 최종 전극 물질로 선정하였다. 이 전극을 기반으로 제작된 비효소적 포도당 검출 센서는 0.09899~3.754 mM과 3.754~50 mM의 선형 구간에서 각각 0.744 mA/mM과 0.330 mA/mM 정도의 향상된 감도를 보였다. 본 연구를 통해 탄소섬유 토우의 전극 소재로서 사용 가능성을 확인했으며, 고성능 유연 전극 소재 개발에 기초 연구로 활용 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2023년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.

References

  1. Sekar, M., Pandiaraj, M., Bhansali, S., Ponpandian, N. and Viswanathan, C., "Carbon Fiber Based Electrochemical Sensor for Sweat Cortisol Measurement," Sci. Rep., 9, 403(2019).
  2. Schroder, P., Aguilo-Aguayo, N., Auer, A., GrieBer, C., Kunze-Liebhauser, J., Ma, Y., Hummel, M., Obendorf, D. and Bechtold, T., "Activation of Carbon Tow Electrodes for Use in Iron Aqueous Redox Systems for Electrochemical Applications," J. Mater. Chem. C, 8, 7755-7764(2020). https://doi.org/10.1039/D0TC00594K
  3. Gao, L., Li, X., Li, X., Cheng, J., Wang, B., Wang, Z. and Li, C., "A Coaxial Yarn Electrode Based on Hierarchical MoS2 Nanosheets/carbon Fiber Tows for Flexible Solid-state Supercapacitors," RSC Adv., 6, 57190-57198(2016). https://doi.org/10.1039/C6RA10178J
  4. Pezeshki, A, M., Clement, J. T., Veith, G. M., Zawodzinski, T. A. and Mench, M. M., "High Performance Electrodes in Vanadium Redox Flow Batteries Through Oxygen-enriched Thermal Activation," J. Power Sources, 294, 333-338(2015). https://doi.org/10.1016/j.jpowsour.2015.05.118
  5. Maruyama, J., Maruyama, S., Fukuhara, T. and Hanafusa, K., "Efficient Edge Plane Exposure on Graphitic Carbon Fiber for Enhanced Flow-battery Reactions," J. Phys. Chem. C., 121, 24425-24433(2017). https://doi.org/10.1021/acs.jpcc.7b07961
  6. Engstrom, R. C., "Electrochemical Pretreatment of Glassy Carbon Electrode," Anal. Chem., 54, 2310-2314(1982). https://doi.org/10.1021/ac00250a038
  7. Dekanski, A., Stevanovic, J., Stevanovic, R., Nikolic, B. Z. and Jovanovic, V., "Glassy Carbon Electrodes: I. Characterization and Electrochemical Activation," Carbon, 39, 1195-1205(2001). https://doi.org/10.1016/S0008-6223(00)00228-1
  8. Pumera, M., Sasaki, T. and Iwai, H., "Relationship Between Carbon Nanotube Structure and Electrochemical Behavior: Heterogeneous Electron Transfer at Electrochemically Activated Carbon Nanotubes," Chem. - Asian J., 3, 2046-2055(2008). https://doi.org/10.1002/asia.200800218
  9. Yue, L., Li, W., Sun, F., Zhao, L. and Xing, L., "Highly Hydroxylated Carbon Fibres as Electrode Materials of All-vanadium Redox Flow Battery," Carbon, 48, 3079-3090(2010). https://doi.org/10.1016/j.carbon.2010.04.044
  10. Sun, B. and Kazacos, M. S., "Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application-part II. Acid Treatments," Electrochem. Acta, 37, 2459-2465 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
  11. Peebles, L. H., "Carbon Fibers: Formation, Structure, and Properties," 1st ed., CRC Press, Boca Raton(1995).
  12. Li, W., Liu, J. and Yan, C., "Multi-walled Carbon Nanotubes Used as An Electrode Reaction Catalyst for VO2+/VO2+ for a Vanadium Redox Flow Battery," Carbon, 49, 3463-3470(2011). https://doi.org/10.1016/j.carbon.2011.04.045
  13. Friedl, J., Bauer, C. M., Rinaldi, A. and Stimming, U., "Electron Transfer Kinetics for the VO2+/VO2+ Reaction on Multi-walled Carbon Nanotubes," Carbon, 63, 228-239(2013). https://doi.org/10.1016/j.carbon.2013.06.076
  14. Ruan, C., Li, P., Xu, J., Chen, Y. and Xie, Y., "Activation of Carbon Fiber for Enhancing Electrochemical Performance," Inorg. Chem. Front., 6, 3583-3597(2019). https://doi.org/10.1039/C9QI01028A
  15. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K. and Vijayaraghavan, R., "Immobilization of Acetylcholinesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25, 832-838(2009). https://doi.org/10.1016/j.bios.2009.08.036
  16. Torz-Piotrowska, R., Wrzyszczynski, A., Paprocki, K., Szreiber, M., Uniszkiewicz, C. and Staryga, E., "The Application of CVD Diamond Films in Cyclic Voltammetry," J. Achiev. Mater. Manuf. Eng., 37, 486-491(2009).
  17. Wu, J. and Qu, Y., "Mediator-free Amperometric Determination of Glucose Based on Direct Electron Transfer Between Glucose Oxidase and An Oxidized Boron-doped Diamond Electrode," Anal. Bioanal. Chem., 385, 1330-1335(2006). https://doi.org/10.1007/s00216-006-0534-y
  18. Misak, H. E., Asmatulu, R. A., O'Malley, M., Jurak, E. and Mall, S., "Functionalization of Carbon Nanotube Yarn by Acid Treatment," Int. J. Smart Nano Mater., 5, 34-43(2014). https://doi.org/10.1080/19475411.2014.896426
  19. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N., "Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its Electrochemical Detection of Glucose," J. Electrochem. Soc., 162, H392-H396(2015). https://doi.org/10.1149/2.0881506jes
  20. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," 2nd ed., John Wiley and Sons, New York(1980).
  21. Song, M. J., "Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-doped Diamond for Detection of Glucose," Korean Chem. Eng. Res., 57, 606-610(2019).
  22. Song, M. J., "Investigation on Electrochemical Property of CNT Fibers and Its Non-enzymatic Sensing Performance for Glucose Detection," Korean Chem. Eng. Res., 59, 606-610(2021).