DOI QR코드

DOI QR Code

Electrochemical Properties of SiOx Anode for Lithium-Ion Batteries According to Particle Size and Carbon Coating

입자 크기 및 탄소 코팅에 따른 리튬이온배터리용 SiOx 음극활물질의 전기화학적 특성

  • Anna Park (Department of Chemical Engineering, Chungbuk National University) ;
  • Byung-Ki Na (Department of Chemical Engineering, Chungbuk National University)
  • 박안나 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2023.11.23
  • Accepted : 2024.01.18
  • Published : 2024.02.01

Abstract

In this study, the electrochemical properties of SiOx@C composite materials were prepared to alleviate volume expansion and cycle stability of silicon and to increase the capacity of anode material for LIBs. SiO2 particles of 100, 200, and 500 nm were synthesized by the Stӧber method, and reduced to SiOx (0≤x≤2) through the magnesiothermic reduction method. Then, SiOx@C anode materials were synthesized by carbonization of PVC on SiOx. The physical properties of prepared SiOx and SiOx@C anode materials were analyzed by XRD, SEM, TGA, Raman spectroscopy, XPS and BET. The electrochemical properties were investigated by cycling performance, rate performance, CV and EIS test. As a result, the SiOx@C-7030 manufactured by coating carbon at SiOx : C = 70 : 30 on a 100 nm SiOx with the smallest particle size showed the best electrochemical properties with a discharge capacity of 1055 mAh/g and a capacity retention rate of 81.9% at 100 cycles. It was confirmed that cycle stability was impoved by reducing particle size and carbon coating.

본 연구에서는 리튬이온배터리용 고용량 음극활물질인 실리콘의 부피팽창을 완화하고 사이클 안정성을 향상시키기 위해 SiOx@C 복합소재를 제조하였다. Stӧber 법을 통해 입자 크기가 각각 100, 200, 500 nm인 SiO2를 합성하였고, 마그네슘 열환원을 통해 SiOx (0≤x≤2)를 제조하였다. 그 후 SiOx에 PVC를 탄화시켜 SiOx와 C의 비율에 따라 SiOx@C 음극활물질을 합성하였다. 제조된 SiOx와 SiOx@C 음극활물질의 물리적 특성은 XRD, SEM, TGA, 라만분광법, XPS, BET를 사용해 분석하였다. 그리고 사이클 테스트, 율속특성, CV, EIS 테스트를 통해 전기화학적 특성을 조사하였다. 입자 크기가 가장 작은 100 nm SiOx에 SiOx:C=70:30으로 탄소를 코팅하여 제조된 SiOx@C-7030은 100 사이클에서 1055 mAh/g의 방전용량과 81.9%의 용량을 유지하여 가장 우수한 전기화학적 특성을 보여주었다. 이는 SiOx 음극활물질 입자의 크기를 줄이고, 탄소를 코팅하여 사이클 안정성을 향상시킬 수 있다는 것을 의미한다.

Keywords

References

  1. Tang, H., Zhang, J., Zhang, Y. J., Xiong, Q. Q., Tong, Y. Y., Li, Y., Wang, X. L. Gu, C. D. and Tu, J. P., "Porous Reduced Graphene Oxide Sheet Wrapped Silicon Composite Fabricated by Steam Etching for Lithium-Ion Battery Application," J. Power Sources, 286, 431-437(2015).
  2. Wu, L., Yang, J., Zhou, X., Zhang, M., Ren, Y. and Nie, Y., "Silicon Nanoparticles Embedded in a Porous Carbon Matrix as a High-Performance Anode for Lithium-Ion Batteries," J. Mater. Chem. A, 4(29), 11381-11387(2016). https://doi.org/10.1039/C6TA04398D
  3. Hsieh, C. C., Lin, Y. G., Chiang, C. L. and Liu, W. R., "CarbonCoated Porous Si/C Composite Anode Materials via Two-step Etching/Coating Processes for Lithium-Ion Batteries," Ceram. Int., 46(17), 26598-26607(2020). https://doi.org/10.1016/j.ceramint.2020.07.128
  4. Wang, D., Zhou, C., Cao, B., Xu, Y., Zhang, D., Li, A., Zhou, J., Ma, Z., Chen, X. and Song, H., "One-Step Synthesis of Spherical Si/C Composites with Onion-like Buffer Structure as HighPerformance Anodes for Lithium-Ion Batteries," Energy Stor. Mater., 24, 312-318(2020).
  5. Chen, S., Gordin, M. L., Yi, R., Howlett, G., Sohn, H. and Wang, D., "Silicon Core-Hollow Carbon Shell Nanocomposites with Tunable Buffer Voids for High Capacity Anodes of Lithium-Ion Batteries," Phys. Chem. Chem. Phys., 14(37), 12741-12745(2012). https://doi.org/10.1039/c2cp42231j
  6. Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B. W. and Wu, J., "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Adv. Energy Mater., 4(1), 1300882(2014).
  7. Preman, A. N., Lim, Y. E., Lee, S., Kim, S., Kim, I. T. and Ahn, S. K. "Facile Synthesis of Polynorbornene-based Binder through ROMP for Silicon Anode in Lithium-ion Batteries," Korean J. Chem. Eng., 40(10), 2529-2537(2023). https://doi.org/10.1007/s11814-023-1428-9
  8. Liu, M. P., Li, C. H., Du, H. B. and You, X. Z., "Facile Preparation of Silicon Hollow Spheres and Their Use in Electrochemical Capacitive Energy Storage," Chem. Comm., 48(41), 4950-4952(2012). https://doi.org/10.1039/c2cc17083c
  9. Entwistle, J., Rennie, A. and Patwardhan, S., "A Review of Magnesiothermic Reduction of Silica to Porous Silicon for LithiumIon Battery Applications and Beyond," J. Mater. Chem. A, 6(38), 18344-18356(2018). https://doi.org/10.1039/C8TA06370B
  10. Zhou, C., Liu, J., Gong, X. and Wang, Z., "Optimizing the Function of SiOx in the Porous Si/SiOx Network via a Controllable Magnesiothermic Reduction for Enhanced Lithium Storage," J. Alloys Compd., 874, 159914(2021).
  11. Moon, D. B., Kim, K. H. and Ahn, H. J., "Effect of Hierarchically Reduced SiOx on Anode Performance of Li-Ion Batteries," Korean J. Chem. Eng., 40(2), 3046-3051(2023). https://doi.org/10.1007/s11814-023-1526-8
  12. Cui, J., Zhang, H., Liu, Y., Li, S., He, W., Hu, J. and Sun, J., "Facile, Economical and Environment-Friendly Synthesis Process of Porous N-Doped Carbon/SiOx Composite from Rice Husks as High-property Anode for Li-Ion Batteries," Electrochim. Acta, 334, 135619(2020).
  13. Liu, Y., Ruan, J., Liu, F., Fan, Y. and Wang, Pu., "Synthesis of SiOx/C Composite with Dual Interface as Li-Ion Battery Anode Material," J. Alloys Compd., 802, 704-711(2019). https://doi.org/10.1016/j.jallcom.2019.06.072
  14. Yu, B. C., Hwa, Y., Kim, J. H. and Sohn, H. J., "A New Approach to Synthesis of Porous SiOx Anode for Li-Ion Batteries via Chemical Etching of Si Crystallites," Electrochim. Acta, 177, 426-430 (2014). https://doi.org/10.1016/j.electacta.2013.11.158
  15. Nulu, A., Nulu, V. and Sohn, K. Y., "Silicon and Porous MWCNT Composite as High Capacity Anode for Lithium-ion Batteries," Korean J. Chem. Eng., 37(10), 1795-1802(2020). https://doi.org/10.1007/s11814-020-0559-5
  16. Zhang, J., Ma, P., Zhang, X., Liu, Z., Zheng, J., Zuo, Y., Xue, C., Cheng, B. and Li, C., "Core-Shell Structured SiOx-C Composite for Lithium Ion Battery Anodes," Energy Techno., 7(4), 1800800 (2019).
  17. Dong, H., Fu, X., Wang, J., Wang, P., Ding, H., Song, R., Wang, S., Li, R. and Li, S., "In-situ Construction of Porous Si@C Composites with LiCl Template to Provide Silicon Anode Expansion Buffer," Carbon, 173, 687-695(2021). https://doi.org/10.1016/j.carbon.2020.11.042
  18. Green, D. L., Jayasundara, S., Lam, Y. F. and Harris, M. T., "Chemical Reaction Kinetics Leading to the First Stober Silica Nanoparticles - NMR and SAXS Investigation," J. Non-Cryst. Solids, 315, 166-179(2003). https://doi.org/10.1016/S0022-3093(02)01577-6
  19. Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K. and Makino, K., "A Novel Method for Synthesis of Silica Nanoparticles," J. Colloid Interface Sci., 289(1), 125-131(2005). https://doi.org/10.1016/j.jcis.2005.02.019
  20. Jiang, X., Tang, X., Tang, L., Zhang, B. and Mao, H., "Synthesis and Formation Mechanism of Amorphous Silica Particles via Sol-Gel Process with Tetraethylorthosilicate," Ceram. Int., 45(6), 7673-7680(2019). https://doi.org/10.1016/j.ceramint.2019.01.067
  21. Yin, S., Zhao, D., Ji, Q., Xia, Y., Xia, S., Wang, X., Wang, M., Ban, J., Zhang, Y., Metwalli, E., Wang, X., Xiao, Y., Zuo, X., Xie, S., Fang, K., Liang, S., Zheng, L., Qiu, B., Yang, Z., Lin, Y., Chen, L., Wang, C., Liu, Z., Zhu, J., Muller-Buschbaum, P. and Cheng, Y. J., "Si/Ag/C Nanohybrids with in Situ Incorporation of SuperSmall Silver Nanoparticles: Tiny Amount, Huge Impact," ACS Nano, 12(1), 861-875(2018).
  22. Jin, C., Dan, J., Zou, Y., Xu, G., Yue, Z., Li, X., Sun, F., Zhou, L. and Wang, L., "Carbon-Coated Nitrogen Doped SiOx Anode Material for High Stability Lithium Ion Batteries," Ceram. Int., 47(20), 29443-29450(2021). https://doi.org/10.1016/j.ceramint.2021.07.112
  23. Cong, R., Park, H. H., Jo, M., Lee, H. and Lee, C. S., "Synthesis and Electrochemical Performance of Electrostatic Self-Assembled Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries," Molecules, 26(16), 4831(2021).
  24. Yu, Q., Ge, P., Liu, Z., Xu, M., Yang, W., Zhou, L., Zhao, D. and Mai, L., "Ultrafine SiOx/C Nanospheres and Their Pomegranatelike Assemblies for High-Performance Lithium Storage," J. Mater. Chem. A, 6(30), 14903-14909(2018). https://doi.org/10.1039/C8TA03987A
  25. Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisakssontorn, W., Lerner, M. M. and Ji, X., "Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions," Sci. Rep., 3(1), 2222(2013).
  26. Lakhonchai, A., Chingsungnoen, A., Poolcharuansin, P., Chanlek, N., Tunmee, S. and Rittihong, U., "Improvement of Corrosion Resistance and Mechanical Properties of Chrome Plating by Diamond-like Carbon Coating with Different Silicon-Based Interlayers," Mater. Res. Express., 9(5), 055604(2022).
  27. Liu, S. F., Kuo, C. H., Lin, C. C., Lin, H. Y., Lu, J. C. Z., Kang, W., Fey, G. T. K. and Chen, H. Y., "Biowaste-Derived Si@SiOx/C Anodes for Sustainable Lithium-Ion Batteries," Electrochim. Acta, 403, 139580(2022).
  28. Bashouti, M. Y., Sardashti, K., Ristein, J. and Christiansen, S. H., "Early Stages of Oxide Growth in H-Terminated Silicon Nanowires: Determination of Kinetic Behavior and Activation Energy," Phys. Chem. Chem. Phys., 14(34), 11877-11881(2012). https://doi.org/10.1039/c2cp41709j
  29. Yao, Y., Xu, X., Zhao, H., Tong, Y. and Li, Y., "Multilayer Si@SiOx@Void@C Anode Materials Synthesized via Simultaneously Carbonization and Redox for Li-Ion Batteries," Ceram. Int., 48(9), 12217-12227(2022). https://doi.org/10.1016/j.ceramint.2022.01.082
  30. Hu, G., Yu, R., Liu, Z., Yu, Q., Zhang, Y., Chen, Q., Wu, J., Zhou, L. and Mai, L., "Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage," ACS Appl. Mater. Interfaces, 13(3), 3991-3998(2021). https://doi.org/10.1021/acsami.0c19673
  31. Tao, H. C., Huang, M., Fan, L. Z. and Qu, X., "Interweaved Si@SiOx/C Nanoporous Spheres as Anode Materals for Li-Ion Batteries," Solid State Ion, 220, 1-6(2012). https://doi.org/10.1016/j.ssi.2012.05.014
  32. Lee, E. H., Jeong, B. O., Jeong, S. H., Kim, T. J., Kim, Y. S. and Jung, Y., "Effect of Carbon Matrix on Electrochemical Performance of Si/C Composites for Use in Anodes of Lithium Secondary Batteries," Bull. Korean Chem. Soc., 34(5), 1435-1440(2013). https://doi.org/10.5012/bkcs.2013.34.5.1435
  33. Zhu, M., Yang, J., Yu, Z., Chen, H. and Pan, F., "Novel Hybrid Si Nanocrystals Embedded in a Conductive SiOx@C Matrix from One Single Precursor as a High Performance Anode Material For Lithium-Ion Batteries," J. Mater. Chem. A, 5(15), 7026-7034 (2017). https://doi.org/10.1039/C7TA01254C
  34. Li, Y., Wang, R., Zhang, J., Chen, J., Du, C., Sun, T., Liu, J., Gong, C., Guo, J., Yu, L. and Zhang, J., "Sandwich Structure of Carbon-Coated Silicon/Carbon Nanofiber Anodes for LithiumIon Batteries," Ceram. Int., 45(13), 16195-16201(2019). https://doi.org/10.1016/j.ceramint.2019.05.141
  35. Cen, Y., Qin, Q., Sisson, R. D. and Liang, J., "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochim. Acta, 251, 690-698(2017). https://doi.org/10.1016/j.electacta.2017.08.139
  36. Koraag, P. Y. E., Firdaus, A. M., Hawari, N. H., Refino, A. D., Dempwolf, W., Iskandar, F., Peiner, E., S. Wasisto, H. and Sumboja, A., "Covalently Bonded Ball-Milled Silicon/CNT Nanocomposite as Lithium-Ion Battery Anode Material," Batteries, 8(10), 165 (2022).
  37. Liu, X. H., Zhong, L., Huang, S., Mao, S. X., Zhu, T. and Huang, J. Y., "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," ACS Nano, 6(2), 1522-1531(2012). https://doi.org/10.1021/nn204476h
  38. Wu, L., Zhou, H., Yang, J., Zhou, X., Ren, Y., Nie, Y. and Chen, S., "Carbon Coated Mesoporous Si Anode Prepared by a Partial Magnesiothermic Reduction for Lithium-Ion Batteries," J. Alloys Compd., 716, 204-209(2017).
  39. Zhang, X., Zhou, L., Huang, M., Yang, C., Xu, Y. and Huang, J., "Synthesis of Porous Si/C by Pyrolyzing Toluene as Anode in Lithium-Ion Batteries with Excellent Lithium Storage Performance," Ionics, 25, 2093-2102(2019). https://doi.org/10.1007/s11581-018-2601-8
  40. Cui, H., Chen, K., Shen, Y. and Wang, Z., "Self-Sacrificed Synthesis of Amorphous Carbon-Coatied SiOx as Anode Materials for Lithium-Ion Batteries," Int. J. Electrochem. Sci., 13, 5474-5487(2018). https://doi.org/10.20964/2018.06.57