DOI QR코드

DOI QR Code

Application of Handheld Raman Spectroscopy for Pigment Identification of a Hanging Painting at Janggoksa Temple(Maitreya Buddha)

장곡사 미륵불 괘불탱의 채색 재료 분석을 위한 휴대용 라만 분광기의 적용성 연구

  • LEE Na Ra (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • YOO Youngmi (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • KIM Sojin (Conservation Science Division, National Research Institute of Cultural Heritage)
  • 이나라 (국립문화재연구원 보존과학연구실) ;
  • 유영미 (국립문화재연구원 보존과학연구실) ;
  • 김소진 (국립문화재연구원 보존과학연구실)
  • Received : 2023.09.15
  • Accepted : 2023.10.30
  • Published : 2023.12.30

Abstract

The purpose of this study is to apply the handheld Raman spectrometer to identify the coloring materials used in a large Buddhist painting (of Maitreya Buddha) at Janggoksa Temple through cross-validation with HH-XRF. An in situ investigation was performed together with use of a digital microscope and HH-XRF analysis to verify the properties of pigments used in the gwaebul ("large Buddhist painting") via a non-destructive method. However, the identification of coloring materials composed of light elements and mixed or overlaid pigments is difficult using only non-destructive analysis data. Unlike in situ investigation, laboratory analysis often required samples yet the sampling is restricted to a small quantity due to the cultural heritage characteristic. Thus, it is necessary to develop a non-destructive in situ method to supplement the HH-XRF data. The large Buddhist painting at Janggoksa Temple was painted mainly using white, red, yellow, green, and blue colors. The Raman spectroscopy provides molecular information, while XRF spectroscopy provides information about elemental composition of the pigments. Analysis results identified various coloring materials: inorganic pigment, such as lead white, minium, cinnabar, and orpiment, as well as organic pigment such as gamboge and indigo. Therefore, it is possible to obtain more information for the identification of pigments; organic pigment and mixed or overlaid pigments, while at the same time minimizing the collection sample and simplifying the analysis procedure compared to previously used methods. The results of this study will be used as basic data for the analysis of painting cultural heritage through a non-destructive in situ method in the future.

본 연구는 대형불화 현장 조사에 비파괴 조사장비 중 하나인 휴대용 라만 분광기를 적용하고 그 결과를 HH-XRF 데이터와 상호 비교하여 장곡사 미륵불 괘불탱에 사용된 채색 재료를 동정하였다. 대형불화에 사용된 채색 재료 분석시, 현장에서 주로 휴대용 현미경과 HH-XRF를 이용한다. 하지만 채색 재료가 경원소로 구성되어 있거나 여러 안료가 중첩 또는 혼합 채색된 경우, 비파괴 분석 데이터만으로는 해석에 한계가 있다. 또한 문화유산이라는 특성상 수습할 수 있는 시료의 양은 제한적이어서 XRD, SEM-EDS 및 라만 분광을 이용한 정밀 분석을 수행하는데 어려움이 있다. 따라서 현장 조사 시 HH-XRF 분석 데이터를 보완할 분석기술이 필요하다. 장곡사 미륵불 괘불탱을 대상으로 백색, 적색, 황색, 녹색, 청색 색상별 채색 재료에 대하여 HH-XRF로 성분을 분석하고 휴대용 라만 분광기를 적용하여 분자구조를 확인하였다. 분석결과, 백색은 연백, 적색은 진사, 석간주, 황색은 등황, 석황, 녹색은 염화동, 청색은 쪽이 사용된 것을 확인할 수 있었다. 휴대용 라만 분광기를 적용함으로써 데이터에 대한 교차검증뿐 아니라 HH-XRF로 확인이 어려웠던 혼합 채색된 안료에 대한 식별과 유기안료에 대한 정보를 획득하는데 도움이 되었다. 또한 대형불화 등 회화문화유산의 비파괴 현장 조사에 휴대용 라만이 다양하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. 경유진, 2019, 「조선후기 장엄신 괘불도 연구」, 동국대학교 석사학위논문, pp.89~98, 185~188.
  2. 문화재청, 2020, 「보물-고려불화, 괘불도」, p.99.
  3. 문화재청.성보문화재연구원, 2022, 「대형불화 정밀조사 보고서 51」, pp.16~20, 126.
  4. 이은우.경유진.윤지현.권윤미.송정원.서민석.이장존, 2019, 「과학적 분석에 의한 은해사 괘불탱의 상태 및 재료 해석」, 「보존과학회지」 35(6), pp.689~700. https://doi.org/10.12654/JCS.2019.35.6.12
  5. 이은우.윤지현.권윤미.신태호, 2020, 「칠장사 오불회 괘불탱 화기에 기록된 채색 재료의 해석」, 「보존과학회지」 36(6), pp.519~532.
  6. 이장존.경유진.이종수.서민석, 2019b, 「보은 법주사 <괘불탱>의 미술사적 특징과 채색 안료의 과학적 분석 연구」, 「문화재」 52(4), pp.226~245. https://doi.org/10.22755/KJCHS.2019.52.4.226
  7. 이장존.한민수.권혁남.이종수.윤지현.권윤미, 2019a, 「금탑사 괘불탱과 만연사 괘불탱의 직물 및 채색 안료 특성 비교」, 「불교미술사학」 28, pp.523~546. https://doi.org/10.36620/BMS.2019.28.21
  8. 이장존.한민수.유영미.권혁남, 2018, 「대련사 괘불탱에 사용한 채색 안료의 과학적 분석」, 「보존과학연구」 39, pp.103~114.
  9. 정경복, 2017, 「라만분광학의 바이오메디컬 응용」, 「New Physics: Sae Mulli」 67(6), pp.665~678. https://doi.org/10.3938/NPSM.67.665
  10. 정희원.양민정.송정원.배수빈, 2022, 「괘불의 구조와 손상유형」, 「보존과학연구」 43, pp.79~95.
  11. Bell, I.M., Clark, R.J., Gibbs, P.J., 1997, 「Raman spectroscopic library of natural and synthetic pigments(pre- ~1850 AD)」, 「Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy」 53, pp.2159~2179. https://doi.org/10.1016/S1386-1425(97)00140-6
  12. Bersani, D., Conti, C., Matousek, P., Pozzi, F., Vandenabeele, P., 2016a, 「Methodological evolutions of Raman spectroscopy in art and archaeology」, 「Analytical Methods」 8, pp.8395~8409. https://doi.org/10.1039/C6AY02327D
  13. Bersani, D., Lottici, P.P., 2016b, 「Raman spectroscopy of minerals and mineral pigments in archaeometry」, 「Journal of Raman Spectroscopy」 47(5), pp.499~530. https://doi.org/10.1002/jrs.4914
  14. Burgio, L., Clark, R.J., Hark, R.R., 2010, 「Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings」, 「Proceedings of the National Academy of Sciences」 107(13), pp.5726~5731. https://doi.org/10.1073/pnas.0914797107
  15. Burgio, L., Clark, R.J., 2001, 「Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation」, 「Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy」 57(7), pp.1491~1521. https://doi.org/10.1016/S1386-1425(00)00495-9
  16. Caggiani, M.C., Cosentino, A., Mangone, A., 2016, 「Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database」, 「Microchemical Journal」 129, pp.123~132. https://doi.org/10.1016/j.microc.2016.06.020
  17. Casadio, F., Daher, C., Bellot-Gurlet, L., 2016, 「Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing」, 「Topics in Current Chemistry」 374, pp.1~51. https://doi.org/10.1007/s41061-016-0061-z
  18. Clark, R.J., 2002, 「Pigment identification by spectroscopic means: an arts/science interface」, 「Comptes Rendus Chimie」 5(1), pp.7~20. https://doi.org/10.1016/S1631-0748(02)01341-3
  19. Clark, R.J., 2007, 「Raman microscopy as a structural and analytical tool in the fields of art and archaeology」, 「Journal of Molecular Structure」 834-836, pp.74~80. https://doi.org/10.1016/j.molstruc.2007.01.031
  20. Hanlon, E.B., Manoharan, R., Koo, T.W., Shafer, K., Motz, J.T., Fitzmaurice, M., Kramer, J.R., Itzkan, I., Dasari, R.R., Feld, M.S., 2000, 「Prospects for in vivo Raman spectroscopy」, 「Physics in medicine and biology」 45(2), pp.R1~R59. https://doi.org/10.1088/0031-9155/45/2/201
  21. Kanth, A.P., Singh, R., 2019, 「Spectroscopic and chromatographic investigation of the wall painted surfaces of an 18th century Indian temple, New Delhi」, 「Vibrational Spectroscopy」 104, pp.1~10. https://doi.org/10.1016/j.vibspec.2019.102947
  22. Kosa ova, V., Hradil, D., N mec, I., Bezdi ka, P., Kanicky, V., 2013, 「Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy」, 「Journal of Raman Spectroscopy」 44(11), pp.1570~1577. https://doi.org/10.1002/jrs.4381
  23. Lee, N.R., Yun, J.H., Kim, S.J., 2023, 「Raman spectroscopy of yellow organic pigments of large Korean Buddhist paintings from the late Joseon dynasty (17th-19th centuries)」, 「Journal of Raman Spectroscopy」 54(8), pp.836~846. https://doi.org/10.1002/jrs.6565
  24. Lin, C,H., Chang, Y.F., 2022, 「Comparison and characterization of pigments and dyes by Raman spectroscopy」, 「Analytical Sciences」 38(3), pp.483~495. https://doi.org/10.2116/analsci.21SAR03
  25. Marucci, G., Beeby, A., Parker, A.W., Nicholson, C.E., 2018, 「Raman spectroscopic library of medieval pigments collected with five different wavelengths for investigation of illuminated manuscripts」, 「Analytical Methods」 10, pp.1219~1236. https://doi.org/10.1039/C8AY00016F
  26. Marucci, G., Beeby, A., Parker, A.W., Nicholson, C.E., 2018, 「Raman spectroscopic library of medieval pigments collected with five different wavelengths for investigation of illuminated manuscripts」, 「Analytical Methods」 10, pp.1219~1236. https://doi.org/10.1039/C8AY00016F
  27. Pozzi, F., Basso, E., Rizzo, A., Cesaratto, A., Tague Jr, T.J., 2019, 「Evaluation and optimization of the potential of a handheld Raman spectrometer: in situ, noninvasive materials characterization in artworks」, 「Journal of Raman Spectroscopy」 50(6), pp.861~872. https://doi.org/10.1002/jrs.5585
  28. Puchowicz, D., Cieslak, M., 2022, 「Raman Spectroscopy in the Analysis of Textile Structures」, 「Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization」, pp.1~21.
  29. Qi, W., Mu, T., Chen, S., Wang, Y., 2022, 「Composition analysis of white mineral pigment based on convolutional neural network and Raman spectrum」, 「Journal of Raman Spectroscopy」 53(4), pp.746~754. https://doi.org/10.1002/jrs.6300
  30. Vandenabeele, P., Edwards, H,G., Moens, L., 2007, 「A decade of Raman spectroscopy in art and archaeology」, 「Chemical reviews」 107(3), pp.675~686. https://doi.org/10.1021/cr068036i
  31. Veneranda, M., Irazola, M., Pitarch, A., Olivares, M., Iturregui, A., Castro, K., Madariaga, J.M., 2014, 「In-situ and laboratory Raman analysis in the field of cultural heritage: the case of a mural painting」, 「Journal of Raman Spectroscopy」 45(3), pp.228~237. https://doi.org/10.1002/jrs.4448
  32. Zmuda-Trzebiatowska, I., Wachowiak, M., Klisi ska-Kopacz, A., Trykowski, G., liwi ski, G., 2015, 「Raman spectroscopic signatures of the yellow and ochre paints from artist palette of J. Matejko (1838-1893)」, 「Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy」 136, pp.793~801. https://doi.org/10.1016/j.saa.2014.09.096