DOI QR코드

DOI QR Code

연속형 변수 회귀분석을 통한 열수송관 파손빈도 분석

Continuous Variable Regression Analysis for Frequency of Damage Analysis in Heat Pipe

  • Myeongsik Kong (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jaemo Kang (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Sungyeol Lee (Department of Geotechinical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.11.13
  • 심사 : 2023.11.24
  • 발행 : 2023.12.01

초록

지역난방사업자가 운영하는 열수송관의 효율적인 유지관리를 위해 사업자가 구축한 설비이력 및 파손이력 데이터를 활용하여 파손발생과 연관성을 가지는 주요 독립변수를 확인한 후, 파손빈도와의 상관관계를 분석하고, 파손빈도 추정을 위한 기본모델을 도출하였다. 국내외 지역난방사업자가 기존에 활용 중인 사용기간 기반의 추정 모델과의 연관성을 고려하여 사용기간 뿐만 아니라 관경, 매설깊이, 감시시스템 절연레벨 등 연속형 변수와 파손빈도의 상관성이 가장 높은 독립변수로 단순회귀분석 기본모델을 제시하였으며, 나머지 독립변수는 기본모델을 수정, 보완하는 인자로 반영하였다. 분석 결과 기존 연구사례와 마찬가지로 사용기간과 파손빈도간 분석 모델의 적합성과 두 변수간 상관성이 가장 높은 것으로 확인되어 기본모델로 활용 가능하다. 관경, 매설깊이, 감시시스템 절연레벨 정보 역시 파손빈도와의 상관성이 확인되어 기본모델을 보완하기 위한 인자로 활용 가능하다.

In order to efficiently maintain heat pipes operated by district heating operators, the facility history and damage history data built by the operator are used to identify key independent variables that are related to the occurrence of damage. Afterwards, the correlation with the frequency of damage was analyzed, and a basic model for estimating the frequency of damage was derived. Considering the correlation with the estimation model based on the use time currently being used by domestic and foreign district heating operators, a simple regression analysis basic model was presented as the independent variable with the highest correlation between continuous variables such as the use time, pipe diameter, burial depth, and insulation level of monitoring system, and the frequency of damage. The remaining independent variables were reflected as factors that modify and supplement the basic model. As a result of the analysis, as in previous research cases, it was confirmed that the analysis model between use time and frequency of damage had the highest correlation between the two variables and could be used as a basic model. Pipe diameter, burial depth, and insulation level of monitoring system information have also been confirmed to have a correlation with the frequency of damage, so they can be used as factors to supplement the basic model.

키워드

과제정보

본 연구는 (23주요-대1-임무)지하 공간 정보 정확도 개선 및 매설관 안전관리 기술개발(4/5) 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

참고문헌

  1. 산업통상자원부 (2019), 집단에너지시설의 기술기준, 산업통상자원부고시 제2019-25호.
  2. 한국지역난방공사 (2022), 지사별 열수송관 설비이력, 파손이력 (In Korean).
  3. Ingo Kropp (2017), KANEW 3S 6.3 Training, Report, 3S Consult GmbH, Dresden, pp. 1~54.
  4. Kong, M. S. and Kang, J. M. (2021), Methodology for estimating the probability of damage to a heat transmission pipe, Journal of the Korean Geo-Environmental Society, Vol. 22, No. 11, pp. 15~21 (In Korean).
  5. Pawel Gilski, Ewa Krecielewska, Jean-Marc Lucatelli, Bertrand Bouttier and Yannick Gourbeyre (2015), Probability of failure assessment in district heating network, The 14th International Symposium on District Heating and Cooling, Power and Energy Engineering, Stockholm, Sweden, pp. 517~525.
  6. Sernhed, K. and Jonsson, M. (2017), Risk management for maintenance of district heating networks, Energy Procedia, Vol. 116, pp. 381~393 (2017). https://doi.org/10.1016/j.egypro.2017.05.085
  7. Sernhed, K., Ekdahl, E. and Skoglund, P. (2012), Statusbedomning av betongkulvertar (In English: Status assessments of concrete culverts). Fjarrsyn report, Vol. 9, p. 2012.
  8. Wojdyga, K. and Chorzelski, M. (2017), Chances for polish district heating systems, Energy Procedia, Vol. 116, pp. 106~118. https://doi.org/10.1016/j.egypro.2017.05.059