DOI QR코드

DOI QR Code

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application

반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용

  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Minki Sa (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Hyung Sub Sim (Department of Aerospace Engineering, Sejong University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 추연룡 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 김찬교 (한밭대학교 화학생명공학과) ;
  • 사민기 (한밭대학교 화학생명공학과) ;
  • 심형섭 (세종대학교 항공우주공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2023.07.27
  • Accepted : 2023.08.11
  • Published : 2023.09.30

Abstract

In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

본 연구에서는 반도체 패키지 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용하여 실리카 나노입자를 제조하였으며 이를 전기감응형 스마트유체의 분산 물질로 적용하였다. 상세히는, 실리콘 슬러지에 산처리를 통해 금속불순물을 제거한 고순도의 실리콘 분말을 얻고, 수열합성법을 통해 실리카 나노입자를 합성하였다. 실리카 나노입자의 크기를 조절하기 위해 수열합성법의 반응시간을 8, 15, 20, 30시간으로 진행하였으며, 반응시간이 증가할수록 실리카 나노입자의 크기가 증가하였다. 수열합성의 반응시간이 길어질수록 실리콘의 가수화 및 탈수 반응이 증가하며 입자의 크기를 증가시킨다. 실리콘 슬러지에서 제조한 실리카 나노입자를 실리콘 오일에 분산하여 전기감응형 스마트유체로 응용하였다. 그 결과, 30시간의 수열합성으로 제조된 실리카 나노입자가 동일한 전기장 하에서 21.4Pa의 가장 높은 전단응력을 나타내었다. 이는 큰 실리카 나노입자의 사이에 작은 입자들이 배치되는 보강효과 효과를 통해 단단한 사슬구조의 형성 때문이다. 본 연구를 통해 반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 성공적으로 재활용하여 실리카 나노입자를 제조하였고, 이를 전기감응형 스마트유체에 적용함으로써 산업현장에서 친환경성을 강조하는 ESG 경영의 일환으로 적용될 수 있음을 확인하였다.

Keywords

Acknowledgement

이 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)

References

  1. Kim, J., Jekal, S., Kim, H.-Y., Kim, M. S., Kim, D. H., Kim, C.-G., Chu, Y.-R., Lee, N. and Yoon, C.-M., "Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge", Journal of the Korea Organic Resources Recycling Association, 31(1), pp. 35~45. (2023).
  2. Zhang, S., Xu, X., Lin, T. and He, P., "Recent advances in nano-materials for packaging of electronic devices", Journal of Materials Science: Materials in Electronics, 30(15), pp. 13855~13868. (2019). https://doi.org/10.1007/s10854-019-01790-3
  3. Yang, S., Wan, X., Wei, K., Ma, W. and Wang, Z., "Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: Synergistic chlorination with CaO smelting treatment", Minerals Engineering, 169, p. 1016966. (2021).
  4. Gogotsi, Y., Baek, C. and Kirscht, F., "Raman microspectroscopy study of processing-induced phase transformation and residual stress in silicon", Semiconductor Science and Technology, 14(10), pp. 936~944. (1999). https://doi.org/10.1088/0268-1242/14/10/310
  5. Liu, W., Liu, J., Zhu, M., Wang, W., Wang, L., Xie, S., Wang, L., Wang, X., He, X. and Sun, Y., "Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes", ACS Applied Materials and Interfaces, 12(51), pp. 57055~57063. (2020). https://doi.org/10.1021/acsami.0c16865
  6. Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M. S., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of the Korea Organic Resources Recycling Association, 30(3), pp. 5~12. (2022).
  7. Bondareva, J. V., Aslyamov, T. F., Kvashnin, A. G., Dyakonov, P. V., Kuzminova, Y. O., Mankelevich, Y. A., Voronina, E. N., Dagesyan, S. A., Egorov, A. V., Khmelnitsky, R., A., Tarkhov, M. A., Suetin, N. V., Akhatov, I. S. and Evlashin, S. A., "Environmentally Friendly Method of Silicon Recycling: Synthesis of Silica Nanoparticles in an Aqueous Solution", ACS Sustainable Chemistry and Engineering, 8(37), pp. 14006~14012. (2020). https://doi.org/10.1021/acssuschemeng.0c03783
  8. Stober, W., Fink, A. and Bohn, E., "Controlled growth of monodisperse silica spheres in the micron size range", Journal of Colloid And Interface Science, 26(1), pp. 62~69. (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  9. Hayashi, H. and Hakuta, Y., "Hydrothermal Synthesis of metal oxide nanoparticles in supercritical water", Journal of Supercritical Fluids, 54(1), pp. 96~102. (2010). https://doi.org/10.1016/j.supflu.2010.03.001
  10. Kumar, M., Olajire Oyedun, A. and Kumar, A., "A review on the current status of various hydrothermal technologies on biomass feedstock", Renewable and Sustainable Energy Reviews, 81, pp. 1742~1770. (2018). https://doi.org/10.1016/j.rser.2017.05.270
  11. Yoon, C.-M., Jekal, S., Kim, D.-H., Noh, J., Kim, J., Kim, H.-Y., Kim, C.-G., Chu, Y.-R. and Oh, W.-C., "3D H ierarchically Structured Tin Oxide and Iron Oxide-Embedded Carbon Nanofiber with Outermost Polypyrrole Layer for High-Performance Asymmetric Supercapacitor", Nanomaterials, 13(10), p. 1614. (2023).
  12. Siva, V., Murugan, A., Shameem, A. and Bahadur, S. A., "One-step hydrothermal synthesis of transtion metal oxide electrode material for energy storage applications", Journal of Materials Science: Materials in Electronics, 31(22), pp. 20472~ 20484. (2020). https://doi.org/10.1007/s10854-020-04566-2
  13. Xiao, A., Zhou, S., Zuo, C., Zhuan, Y. and Ding, X., "Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage", Materials Research Bulletin, 61, p. 5457. (2015).
  14. Yang, G. and Park, S.-J., "Conventional and microwave hydrothermal synthesis and application of functional materials: A review", Materials, 12(7), p. 1177. (2019).
  15. Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J. and Wang, X., "Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template", Materials Letters, 60(12), pp. 1484~1487. (2006). https://doi.org/10.1016/j.matlet.2005.11.053
  16. Blin, J. L. and Carteret, C., "Investigation of the Silanols Groups of Mesostructured Silica Prepared Using a Fluorinated Surfactant: Influence of the Hydrothermal Temperature", The Journal of Physical Chemistry C, 111(39), pp. 14380~14388. (2007).
  17. Prabha, S., Durgalakshmi, D., Rajendran, S. and Lichtfouse, E., "Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors:a review", Environmental Chemistry Letters, 19(2), pp. 1667~1691. (2021).
  18. Lu, J., Liong, M., Zink, J. I. and Tamanoi, F., "Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs", Small, 3(8), pp. 1341~1346. (2007). https://doi.org/10.1002/smll.200700005
  19. Yokoi, T., Kubota, Y. and Tatsumi, T., "Amino-functionalized mesoporous silica as base catalyst and adsorbent", Applied Catalysis A: General, 421-422, pp. 14~37. (2012). https://doi.org/10.1016/j.apcata.2012.02.004
  20. Pal, N., Lee, J.-H. and Cho, E.-B., "Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles", Nanomaterials, 10(11), pp. 1~38. (2020). https://doi.org/10.3390/nano10112122
  21. Yoon, C.-M., Lee, K., Noh, J., Lee, S. and Jang, J., "Electrorheological performance of multigramscale mesoporous silica particles with different aspect ratios", Journal of Materials Chemistry C, 4(8), pp. 1713~1719. (2016). https://doi.org/10.1039/C5TC04124D
  22. Noh, J., Yoon, C.-M. and Jang, J., "Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio", Journal of Colloid and Interface Science, 470, pp. 237~244. (2016). https://doi.org/10.1016/j.jcis.2016.02.061
  23. Yoon, C.-M., Jang, Y., Noh, J., Kim, J. and Jang, J., "Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid", ACS Nano, 11(10), pp. 9789~9801. (2017). https://doi.org/10.1021/acsnano.7b02894
  24. Yoon, C.-M., Lee, S., Hong, S. H. and Jang, J., "Fabrication of density-controlled graphene oxide-coated mesoporous silica spheres and their electrorheological activity", Journal of Colloid and Interface Science, 438, pp. 14~21. (2015). https://doi.org/10.1016/j.jcis.2014.09.074
  25. Park, S., Gwon, H. and Lee, S., "Electroresponsive Performances of Ecoresorbable Smart Fluids Consisting of Various Plant-Derived Carrier Liquids", Chemistry - A European Journal, 27(55), pp. 13739~13747. (2021). https://doi.org/10.1002/chem.202101597
  26. Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang, J., "Synthesis and Electroresponse Activity of Porous Polypyrrole/Silica-Titania Core/Shell Nanoparticles", Langmuir, 34(51), pp. 15773~15782. (2018). https://doi.org/10.1021/acs.langmuir.8b02395
  27. Yoon, C.-M., Lee, S., Cheong, O. J. and Jang, J., "Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property", ACS Applied Materials and Interfaces, 7(34), pp. 18977~18984. (2015). https://doi.org/10.1021/acsami.5b02388
  28. Lee, S., Noh, J., Jekal, S., Kim, J., Oh, W.-C., Sim, H.-S., Choi, H.-J., Yi, H. and Yoon, C.-M., "Hollow TiO2 Nanoparticles Capped with Polarizability-Tunable Conducting Polymers for Improved electrorheological Activity", Nanomaterials, 12(19), p. 3521. (2022).
  29. Lee, S., Yoon, C.-M., Hong, J.-Y. and Jang, J., "Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio", Journal of Materials Chemistry C, 2(30), pp. 6010~6016. (2014). https://doi.org/10.1039/C4TC00635F
  30. Yoon, C.-M., Lee, G., Noh, J., Lee, C., Cheong, O. J. and Jang, J., "A comparative study of the electrorheological properties of various N-doped nanomaterials using ammonia plasma treatment", Chemical Communications, 52(26), pp. 4808~4811. (2016). https://doi.org/10.1039/C5CC10201D
  31. Yoon, C.-M., Jang, Y., Noh, J., Kim, J., Lee, K. and Jang, J., "Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry", ACS Applied Materials and Interfaces, 9(41), pp. 36358~36367. (2017). https://doi.org/10.1021/acsami.7b08298
  32. Su, T.-J., Chen, Y.-F., Cheng, J.-C. and Chiu, C.-L., "An artificial neural network approach for wafer dicing saw quality prediction", Microelectronics Reliability, 91, pp. 257~261. (2018). https://doi.org/10.1016/j.microrel.2018.10.013
  33. Han, J. K., Hannah, M. E., Piquette, A., Talbot, J. B., Mishra, K. C. and McKittrick, J., "Particle morphology and luminescence properties of green emitting Ba2SiO4: Eu2+ through a hydrothermal reaction route", Journal of Luminescence, 161, pp. 20~24. (2015). https://doi.org/10.1016/j.jlumin.2014.12.032
  34. Ozel, F., Kockar, H. and Karaagac, O., "Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size", Journal of Superconductivity and Novel Magnetism, 28(3), pp. 823~829. (2015). https://doi.org/10.1007/s10948-014-2707-9
  35. Lee, S., "Highly uniform silica nanoparticles with finely controlled sizes for enhancement of electro-responsive smart fluids", Journal of Industrial and Engineering Chemistry, 77, pp. 426~431. (2019). https://doi.org/10.1016/j.jiec.2019.05.007
  36. Owoeye, S. S., Jegede, F. I. and Borisade, S. G., "Preparation and characterization of nano-sized silica xerogel particles using sodium silicate solution extracted from waste container glasses", Materials Chemistry and Physics, 248, p. 122915. (2020).
  37. Rahman, I. A., Jafarzadeh, M. and Sipaut, C. S., "Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES)", Ceramics International, 35(5), pp. 1883~1888. (2009). https://doi.org/10.1016/j.ceramint.2008.10.028
  38. Kim, J. M., Chang, S. M., Kong, S. M., Kim, K.-S., Kim, J. and Kim, W.-S., "Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process", Ceramics International, 35(3), pp. 1015~1019. (2009). https://doi.org/10.1016/j.ceramint.2008.04.011
  39. Hao, B., N., Guo, Y., X., Liu, Y., D., Wang, L.-M. and Choi, H., J., "Highly transparent electrorheological fluids of silica nanoparticles: the effect of urea modification", Journal of Materials Chemistry C, 4, pp. 7875~7882. (2016). https://doi.org/10.1039/C6TC02154A
  40. Kim, H.-Y., Jekal, S., Lee, N., Sa, M., Kim, D. H., Kim, M. S., Ki, J. and Yoon, C.-M., "Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System", Journal of the Korea Organic Resources Recycling Association, 31(1), pp. 47~56. (2023).
  41. Lee, S., Lee, J., Hwang, S. H., Yun, J. and Jang, J., "Enhanced electroreponsive performance of double-shell SiO2/TiO2 hollow nanoparticles", ACS Nano, 9(5), pp. 4939~4949. (2015). https://doi.org/10.1021/nn5068495
  42. See, H., Kawai, A. and Ikazaki, F., "The effect of mixing particles of different size on the electrorheological response under steady shear flow", Rheologica Acta, 41(1), pp. 55~60. (2002). https://doi.org/10.1007/s003970200005