Acknowledgement
이 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)
References
- Kim, J., Jekal, S., Kim, H.-Y., Kim, M. S., Kim, D. H., Kim, C.-G., Chu, Y.-R., Lee, N. and Yoon, C.-M., "Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge", Journal of the Korea Organic Resources Recycling Association, 31(1), pp. 35~45. (2023).
- Zhang, S., Xu, X., Lin, T. and He, P., "Recent advances in nano-materials for packaging of electronic devices", Journal of Materials Science: Materials in Electronics, 30(15), pp. 13855~13868. (2019). https://doi.org/10.1007/s10854-019-01790-3
- Yang, S., Wan, X., Wei, K., Ma, W. and Wang, Z., "Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: Synergistic chlorination with CaO smelting treatment", Minerals Engineering, 169, p. 1016966. (2021).
- Gogotsi, Y., Baek, C. and Kirscht, F., "Raman microspectroscopy study of processing-induced phase transformation and residual stress in silicon", Semiconductor Science and Technology, 14(10), pp. 936~944. (1999). https://doi.org/10.1088/0268-1242/14/10/310
- Liu, W., Liu, J., Zhu, M., Wang, W., Wang, L., Xie, S., Wang, L., Wang, X., He, X. and Sun, Y., "Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes", ACS Applied Materials and Interfaces, 12(51), pp. 57055~57063. (2020). https://doi.org/10.1021/acsami.0c16865
- Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M. S., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of the Korea Organic Resources Recycling Association, 30(3), pp. 5~12. (2022).
- Bondareva, J. V., Aslyamov, T. F., Kvashnin, A. G., Dyakonov, P. V., Kuzminova, Y. O., Mankelevich, Y. A., Voronina, E. N., Dagesyan, S. A., Egorov, A. V., Khmelnitsky, R., A., Tarkhov, M. A., Suetin, N. V., Akhatov, I. S. and Evlashin, S. A., "Environmentally Friendly Method of Silicon Recycling: Synthesis of Silica Nanoparticles in an Aqueous Solution", ACS Sustainable Chemistry and Engineering, 8(37), pp. 14006~14012. (2020). https://doi.org/10.1021/acssuschemeng.0c03783
- Stober, W., Fink, A. and Bohn, E., "Controlled growth of monodisperse silica spheres in the micron size range", Journal of Colloid And Interface Science, 26(1), pp. 62~69. (1968). https://doi.org/10.1016/0021-9797(68)90272-5
- Hayashi, H. and Hakuta, Y., "Hydrothermal Synthesis of metal oxide nanoparticles in supercritical water", Journal of Supercritical Fluids, 54(1), pp. 96~102. (2010). https://doi.org/10.1016/j.supflu.2010.03.001
- Kumar, M., Olajire Oyedun, A. and Kumar, A., "A review on the current status of various hydrothermal technologies on biomass feedstock", Renewable and Sustainable Energy Reviews, 81, pp. 1742~1770. (2018). https://doi.org/10.1016/j.rser.2017.05.270
- Yoon, C.-M., Jekal, S., Kim, D.-H., Noh, J., Kim, J., Kim, H.-Y., Kim, C.-G., Chu, Y.-R. and Oh, W.-C., "3D H ierarchically Structured Tin Oxide and Iron Oxide-Embedded Carbon Nanofiber with Outermost Polypyrrole Layer for High-Performance Asymmetric Supercapacitor", Nanomaterials, 13(10), p. 1614. (2023).
- Siva, V., Murugan, A., Shameem, A. and Bahadur, S. A., "One-step hydrothermal synthesis of transtion metal oxide electrode material for energy storage applications", Journal of Materials Science: Materials in Electronics, 31(22), pp. 20472~ 20484. (2020). https://doi.org/10.1007/s10854-020-04566-2
- Xiao, A., Zhou, S., Zuo, C., Zhuan, Y. and Ding, X., "Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage", Materials Research Bulletin, 61, p. 5457. (2015).
- Yang, G. and Park, S.-J., "Conventional and microwave hydrothermal synthesis and application of functional materials: A review", Materials, 12(7), p. 1177. (2019).
- Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J. and Wang, X., "Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template", Materials Letters, 60(12), pp. 1484~1487. (2006). https://doi.org/10.1016/j.matlet.2005.11.053
- Blin, J. L. and Carteret, C., "Investigation of the Silanols Groups of Mesostructured Silica Prepared Using a Fluorinated Surfactant: Influence of the Hydrothermal Temperature", The Journal of Physical Chemistry C, 111(39), pp. 14380~14388. (2007).
- Prabha, S., Durgalakshmi, D., Rajendran, S. and Lichtfouse, E., "Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors:a review", Environmental Chemistry Letters, 19(2), pp. 1667~1691. (2021).
- Lu, J., Liong, M., Zink, J. I. and Tamanoi, F., "Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs", Small, 3(8), pp. 1341~1346. (2007). https://doi.org/10.1002/smll.200700005
- Yokoi, T., Kubota, Y. and Tatsumi, T., "Amino-functionalized mesoporous silica as base catalyst and adsorbent", Applied Catalysis A: General, 421-422, pp. 14~37. (2012). https://doi.org/10.1016/j.apcata.2012.02.004
- Pal, N., Lee, J.-H. and Cho, E.-B., "Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles", Nanomaterials, 10(11), pp. 1~38. (2020). https://doi.org/10.3390/nano10112122
- Yoon, C.-M., Lee, K., Noh, J., Lee, S. and Jang, J., "Electrorheological performance of multigramscale mesoporous silica particles with different aspect ratios", Journal of Materials Chemistry C, 4(8), pp. 1713~1719. (2016). https://doi.org/10.1039/C5TC04124D
- Noh, J., Yoon, C.-M. and Jang, J., "Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio", Journal of Colloid and Interface Science, 470, pp. 237~244. (2016). https://doi.org/10.1016/j.jcis.2016.02.061
- Yoon, C.-M., Jang, Y., Noh, J., Kim, J. and Jang, J., "Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid", ACS Nano, 11(10), pp. 9789~9801. (2017). https://doi.org/10.1021/acsnano.7b02894
- Yoon, C.-M., Lee, S., Hong, S. H. and Jang, J., "Fabrication of density-controlled graphene oxide-coated mesoporous silica spheres and their electrorheological activity", Journal of Colloid and Interface Science, 438, pp. 14~21. (2015). https://doi.org/10.1016/j.jcis.2014.09.074
- Park, S., Gwon, H. and Lee, S., "Electroresponsive Performances of Ecoresorbable Smart Fluids Consisting of Various Plant-Derived Carrier Liquids", Chemistry - A European Journal, 27(55), pp. 13739~13747. (2021). https://doi.org/10.1002/chem.202101597
- Yoon, C.-M., Cho, K. H., Jang, Y., Kim, J., Lee, K., Yu, H., Lee, S. and Jang, J., "Synthesis and Electroresponse Activity of Porous Polypyrrole/Silica-Titania Core/Shell Nanoparticles", Langmuir, 34(51), pp. 15773~15782. (2018). https://doi.org/10.1021/acs.langmuir.8b02395
- Yoon, C.-M., Lee, S., Cheong, O. J. and Jang, J., "Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property", ACS Applied Materials and Interfaces, 7(34), pp. 18977~18984. (2015). https://doi.org/10.1021/acsami.5b02388
- Lee, S., Noh, J., Jekal, S., Kim, J., Oh, W.-C., Sim, H.-S., Choi, H.-J., Yi, H. and Yoon, C.-M., "Hollow TiO2 Nanoparticles Capped with Polarizability-Tunable Conducting Polymers for Improved electrorheological Activity", Nanomaterials, 12(19), p. 3521. (2022).
- Lee, S., Yoon, C.-M., Hong, J.-Y. and Jang, J., "Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio", Journal of Materials Chemistry C, 2(30), pp. 6010~6016. (2014). https://doi.org/10.1039/C4TC00635F
- Yoon, C.-M., Lee, G., Noh, J., Lee, C., Cheong, O. J. and Jang, J., "A comparative study of the electrorheological properties of various N-doped nanomaterials using ammonia plasma treatment", Chemical Communications, 52(26), pp. 4808~4811. (2016). https://doi.org/10.1039/C5CC10201D
- Yoon, C.-M., Jang, Y., Noh, J., Kim, J., Lee, K. and Jang, J., "Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry", ACS Applied Materials and Interfaces, 9(41), pp. 36358~36367. (2017). https://doi.org/10.1021/acsami.7b08298
- Su, T.-J., Chen, Y.-F., Cheng, J.-C. and Chiu, C.-L., "An artificial neural network approach for wafer dicing saw quality prediction", Microelectronics Reliability, 91, pp. 257~261. (2018). https://doi.org/10.1016/j.microrel.2018.10.013
- Han, J. K., Hannah, M. E., Piquette, A., Talbot, J. B., Mishra, K. C. and McKittrick, J., "Particle morphology and luminescence properties of green emitting Ba2SiO4: Eu2+ through a hydrothermal reaction route", Journal of Luminescence, 161, pp. 20~24. (2015). https://doi.org/10.1016/j.jlumin.2014.12.032
- Ozel, F., Kockar, H. and Karaagac, O., "Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size", Journal of Superconductivity and Novel Magnetism, 28(3), pp. 823~829. (2015). https://doi.org/10.1007/s10948-014-2707-9
- Lee, S., "Highly uniform silica nanoparticles with finely controlled sizes for enhancement of electro-responsive smart fluids", Journal of Industrial and Engineering Chemistry, 77, pp. 426~431. (2019). https://doi.org/10.1016/j.jiec.2019.05.007
- Owoeye, S. S., Jegede, F. I. and Borisade, S. G., "Preparation and characterization of nano-sized silica xerogel particles using sodium silicate solution extracted from waste container glasses", Materials Chemistry and Physics, 248, p. 122915. (2020).
- Rahman, I. A., Jafarzadeh, M. and Sipaut, C. S., "Synthesis of organo-functionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES)", Ceramics International, 35(5), pp. 1883~1888. (2009). https://doi.org/10.1016/j.ceramint.2008.10.028
- Kim, J. M., Chang, S. M., Kong, S. M., Kim, K.-S., Kim, J. and Kim, W.-S., "Control of hydroxyl group content in silica particle synthesized by the sol-precipitation process", Ceramics International, 35(3), pp. 1015~1019. (2009). https://doi.org/10.1016/j.ceramint.2008.04.011
- Hao, B., N., Guo, Y., X., Liu, Y., D., Wang, L.-M. and Choi, H., J., "Highly transparent electrorheological fluids of silica nanoparticles: the effect of urea modification", Journal of Materials Chemistry C, 4, pp. 7875~7882. (2016). https://doi.org/10.1039/C6TC02154A
- Kim, H.-Y., Jekal, S., Lee, N., Sa, M., Kim, D. H., Kim, M. S., Ki, J. and Yoon, C.-M., "Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System", Journal of the Korea Organic Resources Recycling Association, 31(1), pp. 47~56. (2023).
- Lee, S., Lee, J., Hwang, S. H., Yun, J. and Jang, J., "Enhanced electroreponsive performance of double-shell SiO2/TiO2 hollow nanoparticles", ACS Nano, 9(5), pp. 4939~4949. (2015). https://doi.org/10.1021/nn5068495
- See, H., Kawai, A. and Ikazaki, F., "The effect of mixing particles of different size on the electrorheological response under steady shear flow", Rheologica Acta, 41(1), pp. 55~60. (2002). https://doi.org/10.1007/s003970200005