Acknowledgement
이 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)
References
- Li, Y., Song, J. and Yang, J., "A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle", 37, pp. 627~633. (2014). https://doi.org/10.1016/j.rser.2014.05.059
- Nzereogu, P. U., Omah, A. D., Ezema, F. I. and Nwanya, A. C., "Anode materials for lithium-ion batteries: A review", Applied Surface Science Advances, 9, p. 100233. (2022).
- Diouf, B. and Pode, R., "Potential of lithium-ion batteries in renewable energy", Renewable Energy, 76, pp. 375~380. (2015). https://doi.org/10.1016/j.renene.2014.11.058
- Lecce, D. D., Verrelli, R. and Hassoun, J., "Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations", Green Chemistry, 19, pp. 3422~3467. (2017).
- Goriparti, S., Miele, E., Angelis, F. D., Fabrizio, E. D., Zaccaria, R. P. and Capiglia, C., "Review on recent progress of nanostructured anode materials for Li-ion batteries", Journal of Power Sources, 257, pp. 421~433. (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
- Kim, C., Yang, K. S., Kojima, M., Yoshida, K., Kim, Y. J., Kim, Y. A. and Endo, M., "Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries", Advanced Functional Materials, 16(18), pp. 2393~2397. (2006). https://doi.org/10.1002/adfm.200500911
- Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W. and Kim, J. K., "SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities", Carbon, 49(13), pp. 4524~4534. (2014). https://doi.org/10.1016/j.carbon.2011.06.059
- Liang, Z., Zhao, Y., Ouyang, L., Dong, Y., Kuang, Q., Lin, X. and Yan, D., "Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries", Journal of Power Sources, 252, pp. 244~247. (2014). https://doi.org/10.1016/j.jpowsour.2013.12.019
- Tan, Y., Xu, Z., He, L. and Li, H., "Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode", Journal of Energy Storage, 52, p. 104889. (2022).
- Hou, L., Hu, Z., Wang, X., Qiang, L., Zhou, Y., Lv, L. and Li, S., "Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors", Journal of Colloid and Interface Science, 540, pp. 88~96. (2019). https://doi.org/10.1016/j.jcis.2018.12.029
- Pacheco, R. and Silva, C., "Global Warming Potential of Biomass-to-Ethanol: c", Energies, 12(13), p. 2535. (2019).
- Serna-Jimenez, J. A., Siles, J. A., Martin, M. A. and Chica, A. F., "A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization", Processes, 10(11), p. 2436. (2022).
- Tripathi, N., Hills, C. D., Singh, R. S. and Atkison, C. J., "Biomass waste utilisation in low-carbon products: harnessing a major potential resource", npj climate and atmospheric science, 35. (2019).
- Xiao, L. O., Shi, Z. J., Xu, F. and Sun, R. C., "Hydrothermal carbonization of lignocellulosic biomass", Bioresource Technology, 118, pp. 619~623. (2012). https://doi.org/10.1016/j.biortech.2012.05.060
- Qin, F., Zhang, C., Zeng, G., Huang, D., Tan, X. and Duan, A., "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity", Renewable and Sustainable Energy Reviews, 157, p. 112056. (2022).
- Wang, Y., Zhang, M., Shen, X., Wang, H., Wang, H., Xia, K., Yin, Z. and Zhang, Y., "Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications", Small, 17(40), p. 2008079. (2021).
- Hameed, N., Sharp, J., Nunna, S., Creighton, C., Magniez, K., Jyotishkumar, P., Salim, N. V. and Fox, B., "Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization", Polymer Degradation and Stability, 128, pp. 39~45. (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.029
- Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J. and Yoo, C. G., "Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy", Applied Sciences, 10(12), p. 10124345. (2020).
- Tala, W. and Chantara, S., "Use of spent coffee ground biochar as ambient PAHs sorbent and novel extraction method for GC-MS analysis", Environmental Science and Pollution Research, 26, pp. 13025~13040. (2019). https://doi.org/10.1007/s11356-019-04473-y
- Sahachairungrueng, W., Meechan, C., Veerachat, N., Thompson, A. K. and Teerachaichayut, S., "Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy", Foods, 11(19), p. 3122. (2022).
- Belay, A., "Some biochemical compounds in coffee beans and methods developed for their analysis", International Journal of the Physical Sciences, 6(28), pp. 6373~6378. (2011). https://doi.org/10.5897/IJPS11.486
- Chen, J., Liu, J., Wu, D., Bai, X., Liu, Y., Wu, T., Zhang, C., Chen, D. and Li, H., "Improving the supercapacitor performance of activated carbon materials derived from pretreated rice husk", Journal of Energy Storage, 44, p. 103432. (2021).
- Li, D., Chen, W., Wu, J., Jia, C. Q. and Jiang, X., "The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: focus on N functional groups", Journal of Materials Chemistry A, 8, pp. 24977~24995. (2020). https://doi.org/10.1039/D0TA07977D
- Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., Tan, X., Yang, H., Lu, H. and Lin, H., "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications", Energy, 128, pp. 618~625. (2017). https://doi.org/10.1016/j.energy.2017.04.065