DOI QR코드

DOI QR Code

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries

다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용

  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Hyung Sub Sim (Department of Aerospace Engineering, Sejong University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김찬교 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 추연룡 (한밭대학교 화학생명공학과) ;
  • 심형섭 (세종대학교 항공우주공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2023.08.06
  • Accepted : 2023.08.14
  • Published : 2023.09.30

Abstract

In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.

본 연구에서는 여러 종류의 식물성 바이오매스 폐기물을 리튬이온전지용 음극활물질로 재활용하고자 하였다. 수거한 바이오매스는 세척 및 분쇄 후 질소 환경(850℃)으로 탄화하였으며, 이를 FE-SEM, EDS, FT-IR을 사용하여 물리·화학적 특성을 비교하였다. 바이오매스 기반의 탄소 전구체로 왕겨, 밤껍질, 녹차 티백, 커피 폐기물을 사용했으며, 전구체의 성분에 따라 형태 및 탄소화 정도의 차이가 발생함을 확인하였다. 바이오매스 폐기물로 제조된 탄소를 음극재로 활용하여 전기화학 성능을 비교한 결과 각각 65.8, 80.2, 90.6, 104.7mAh g-1의 방전용량을 나타내었으며, 커피 폐기물을 전구체로 제조한 탄소가 가장 높은 방전용량을 나타내었다. 이는 바이오매스의 원소 조성 및 구성성분 차이로 인해 탄화 정도가 달라지기 때문이다. 최종적으로, 환경오염을 유발하는 다양한 식물성 바이오매스를 탄화를 통해 효과적인 에너지 저장매체로 활용할 수 있는 가능성을 제시하였다.

Keywords

Acknowledgement

이 연구는 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 미래도전국방기술 연구개발사업임(No. 915066201)

References

  1. Li, Y., Song, J. and Yang, J., "A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle", 37, pp. 627~633. (2014). https://doi.org/10.1016/j.rser.2014.05.059
  2. Nzereogu, P. U., Omah, A. D., Ezema, F. I. and Nwanya, A. C., "Anode materials for lithium-ion batteries: A review", Applied Surface Science Advances, 9, p. 100233. (2022).
  3. Diouf, B. and Pode, R., "Potential of lithium-ion batteries in renewable energy", Renewable Energy, 76, pp. 375~380. (2015). https://doi.org/10.1016/j.renene.2014.11.058
  4. Lecce, D. D., Verrelli, R. and Hassoun, J., "Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations", Green Chemistry, 19, pp. 3422~3467. (2017).
  5. Goriparti, S., Miele, E., Angelis, F. D., Fabrizio, E. D., Zaccaria, R. P. and Capiglia, C., "Review on recent progress of nanostructured anode materials for Li-ion batteries", Journal of Power Sources, 257, pp. 421~433. (2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
  6. Kim, C., Yang, K. S., Kojima, M., Yoshida, K., Kim, Y. J., Kim, Y. A. and Endo, M., "Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries", Advanced Functional Materials, 16(18), pp. 2393~2397. (2006). https://doi.org/10.1002/adfm.200500911
  7. Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W. and Kim, J. K., "SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities", Carbon, 49(13), pp. 4524~4534. (2014). https://doi.org/10.1016/j.carbon.2011.06.059
  8. Liang, Z., Zhao, Y., Ouyang, L., Dong, Y., Kuang, Q., Lin, X. and Yan, D., "Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries", Journal of Power Sources, 252, pp. 244~247. (2014). https://doi.org/10.1016/j.jpowsour.2013.12.019
  9. Tan, Y., Xu, Z., He, L. and Li, H., "Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode", Journal of Energy Storage, 52, p. 104889. (2022).
  10. Hou, L., Hu, Z., Wang, X., Qiang, L., Zhou, Y., Lv, L. and Li, S., "Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors", Journal of Colloid and Interface Science, 540, pp. 88~96. (2019). https://doi.org/10.1016/j.jcis.2018.12.029
  11. Pacheco, R. and Silva, C., "Global Warming Potential of Biomass-to-Ethanol: c", Energies, 12(13), p. 2535. (2019).
  12. Serna-Jimenez, J. A., Siles, J. A., Martin, M. A. and Chica, A. F., "A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization", Processes, 10(11), p. 2436. (2022).
  13. Tripathi, N., Hills, C. D., Singh, R. S. and Atkison, C. J., "Biomass waste utilisation in low-carbon products: harnessing a major potential resource", npj climate and atmospheric science, 35. (2019).
  14. Xiao, L. O., Shi, Z. J., Xu, F. and Sun, R. C., "Hydrothermal carbonization of lignocellulosic biomass", Bioresource Technology, 118, pp. 619~623. (2012). https://doi.org/10.1016/j.biortech.2012.05.060
  15. Qin, F., Zhang, C., Zeng, G., Huang, D., Tan, X. and Duan, A., "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity", Renewable and Sustainable Energy Reviews, 157, p. 112056. (2022).
  16. Wang, Y., Zhang, M., Shen, X., Wang, H., Wang, H., Xia, K., Yin, Z. and Zhang, Y., "Biomass-Derived Carbon Materials: Controllable Preparation and Versatile Applications", Small, 17(40), p. 2008079. (2021).
  17. Hameed, N., Sharp, J., Nunna, S., Creighton, C., Magniez, K., Jyotishkumar, P., Salim, N. V. and Fox, B., "Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization", Polymer Degradation and Stability, 128, pp. 39~45. (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.029
  18. Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J. and Yoo, C. G., "Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy", Applied Sciences, 10(12), p. 10124345. (2020).
  19. Tala, W. and Chantara, S., "Use of spent coffee ground biochar as ambient PAHs sorbent and novel extraction method for GC-MS analysis", Environmental Science and Pollution Research, 26, pp. 13025~13040. (2019). https://doi.org/10.1007/s11356-019-04473-y
  20. Sahachairungrueng, W., Meechan, C., Veerachat, N., Thompson, A. K. and Teerachaichayut, S., "Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy", Foods, 11(19), p. 3122. (2022).
  21. Belay, A., "Some biochemical compounds in coffee beans and methods developed for their analysis", International Journal of the Physical Sciences, 6(28), pp. 6373~6378. (2011). https://doi.org/10.5897/IJPS11.486
  22. Chen, J., Liu, J., Wu, D., Bai, X., Liu, Y., Wu, T., Zhang, C., Chen, D. and Li, H., "Improving the supercapacitor performance of activated carbon materials derived from pretreated rice husk", Journal of Energy Storage, 44, p. 103432. (2021).
  23. Li, D., Chen, W., Wu, J., Jia, C. Q. and Jiang, X., "The preparation of waste biomass-derived N-doped carbons and their application in acid gas removal: focus on N functional groups", Journal of Materials Chemistry A, 8, pp. 24977~24995. (2020). https://doi.org/10.1039/D0TA07977D
  24. Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., Tan, X., Yang, H., Lu, H. and Lin, H., "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications", Energy, 128, pp. 618~625. (2017). https://doi.org/10.1016/j.energy.2017.04.065