DOI QR코드

DOI QR Code

A Comparative Study on Morphologies and Characteristics of Silica Nanoparticles Recycled from Silicon Sludge Waste of Semiconductor Process Based on Synthesis Methods

반도체 공정에서 발생하는 폐실리콘 슬러지의 재활용을 통한 실리카 나노입자의 제조 및 합성법에 따른 형상 및 특성 비교 연구

  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Minki Sa (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Hyung Sub Sim (Department of Aerospace Engineering, Sejong University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 사민기 (한밭대학교 화학생명공학과) ;
  • 추연룡 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 김찬교 (한밭대학교 화학생명공학과) ;
  • 심형섭 (세종대학교 항공우주공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2023.07.27
  • Accepted : 2023.08.11
  • Published : 2023.09.30

Abstract

In this study, a comparative study is conducted on the synthesis methods for silica nanoparticle employing the silicon sludge waste generated from the semiconductor manufacturing processes. Specifically, acid-washed silicon sludge wastes with no impurities are employed as the precursors of sol-gel and hydrothermal methods for silica nanoparticles preparation. The morphologies and properties of silica nanoparticles synthesized via two synthetic methods are examined by various analysis methods. As a result, silica nanoparticles from the sol-gel method are fabricated with high purity and uniform shape, while the hydrothermal method exhibits advantages in yield and ease of synthetic process. This comparative study offers detailed experimental results on the two synthetic methods for silica nanoparticle synthesis, which may contribute to the establishment of manufacturing high-value materials using the by-products generated in the semiconductor process.

본 연구에서는 반도체 공정에서 발생하는 폐실리콘 슬러지를 활용하여 고부가가치의 실리카 나노입자로 합성하는 방법들에 대한 비교 연구를 수행하였다. 상세히는, 폐실리콘 슬러지 내에 존재하는 금속과 유기 불순물을 산세 처리를 통해 제거한 뒤 졸-겔법과 수열합성법을 통해 실리카 나노입자로 제조하였다. 두 가지 합성법을 통해 제조된 실리카 나노입자에 대한 다양한 형상 및 특성 분석을 진행하였다. 그 결과, 졸-겔법으로 제조된 실리카 나노입자는 순도가 높고 균일한 형상으로 합성되었으며, 수열합성법은 수율과 단순한 제조법의 이점을 확인할 수 있었다. 본 비교 연구는 폐실리콘 슬러지에서 실리카 나노입자를 제조하는 두 가지 합성법에 대한 상세한 실험 결과를 제시하여, 반도체 공정에서 발생하는 부산물을 활용한 고부가가치 소재 제조법 정립에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2023년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임(RS-2023-00224896)

References

  1. Zhang, L., Liu, Y., Liang, D., Kou, P., Wang, Y., Gao, Y., Li, D. and Liu, H ., "Local and Remote Cooperative Control of Hybrid Distribution Transformers Integrating Photovoltaics in Active Distribution Networks", IEEE Transactions on Sustainable Energy, 13(4), pp. 2012~2026. (2022). https://doi.org/10.1109/TSTE.2022.3179120
  2. Liu, K.-T. and Chen, C.-H., "Formulation of research and development strategy by analysing patent portfolios of key players the semiconductor industry according to patent strength and technical function", World Patent Information, 70, p. 102125. (2022).
  3. Green, M. A., "Thin-film solar cells: review of materials, technologies and commercial status", Journal of Materials Science: Materials in Electronics, 18(1), pp. 15~19. (2007).
  4. Lee, B.-T., Jang, D.-H. and Kim, T.-S., "Effect of carbon addition on the microstructure of Si3N4-Cfiber composites using semiconductor-waste Si sludge", Journal of the European Ceramic Society, 24(8), pp. 2313~2318. (2004). https://doi.org/10.1016/S0955-2219(03)00632-0
  5. K, J., Jekal, S., Kim, H.-Y., Kim, M. S., Kim, D. H., Kim, C.-G., Chu, Y.-R., Lee, N. and Yoon, C.-M., "Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge", Journal of Korea Organic Resource Recycling Association, 31(1), pp. 35~45. (2023).
  6. Jung, W.-G., Back, G.-S., Kim, J.-H., Chang, Y.-C. and Yoo, S.-J., "Preliminary reduction of chromium ore using Si sludge generated in silicon wafer manufacturing process", Journal of Mining and Metallurgy, Section B: Metallurgy, 54(1), pp. 29~37. (2018).
  7. Lin, S. H. and Yang, C. R., "Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication", Journal of Hazardous Materials, 108(1-2), pp. 103~109. (2004). https://doi.org/10.1016/j.jhazmat.2004.01.014
  8. Wang, W., Luo, Y. and Qiao, W., "Possible solutions for sludge dewatering in China", Frontiers of Environmental Science & Engineering in China, 4(1), pp. 102~107. (2010).
  9. Liang, Y., Xu, D., Feng, P., Hao, B., Guo, Y. and Wang, S., "Municipal sewage sludge incineration and its air pollution control", Journal of Cleaner Production, 295, p. 126456. (2021).
  10. Bye, G. and Ceccaroli, B., "Solar grade silicon: Technology status and industrial trends", Solar Energy Materials and Solar Cells, 130, pp. 634~646. (2014).
  11. Liu, W.-T. and Li, K.-C., "Application of Reutilization Technology to Calcium Fluoride Sludge from Semiconductor Manufacturers", Journal of the Air & Waste Management Association, 61(1), pp. 85~91. (2011).
  12. Lee, T.-C., Lin, K.-L., Su, X.-W. and Lin, K.-K., "Recycling CMP sludge as a resource in concrete", Construction and Building Materials, 30, pp. 243~251. (2012). https://doi.org/10.1016/j.conbuildmat.2011.11.019
  13. Jang, H. D., Kim, H., Chang, H., Kim, J., Roh, K. M., Choi, J.-H., Cho, B.-G., Park, E., Kim, H., Luo, J. and Huang, J., "Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries", Scientific Reports, 5(1), p. 9431. (2015).
  14. Ryu, J., Kim, W., Yun, J., Lee, K., Lee, J., Yu, H., Kim, J. H., Kim, J. J. and Jang, J., "Fabrication of Uniform Wrinkled Silica Nanoparticles and Thier Application to Abrasives in Chemical Mechanical Planarization", ACS Applied Materials & Interfaces, 10(14), pp. 11843~11851. (2018).
  15. Linec, M. and Music, B., "The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds", Materials, 12(11), p. 1811. (2019).
  16. Heo, G.-Y. and Park, S.-J., "Effect of coupling agents on thermal, flow, and adhesion properties of epoxy/silica compounds for capillay underfill applications", Powder Technology, 12(11), p. 1811. (2019).
  17. Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of Korea Organic Resource Recycling Association, 30(3), pp. 5~12. (2022).
  18. Bondareva, J. V., Aslyamov, T. F., Kvashnin, A. G., Dyakonov, P. V., Kuzminova, Y. O., Mankelevich, Y. A., Voronina, E. N., Dagesyan, S. A., Egorov, A. V., Khmelnitsky, R. A., Tarkhov, M. A., Suetin, N. V., Akhatov, I. S. and Evlashin, S. A., "Environmentally Friendly Method of Silicon Recycling: Synthesis of Silica Nanoparticles in an Aqueous Solution", ACS Sustainable Chemistry & Engineering, 8(37), pp. 14006~14012. (2020).
  19. Yoon, C.-M., Ryu, J., Yun, J., Kim, Y. K. and Jang, J., "Synthesis of Hierarchical Silica/Titania Hollow Nanoparticles and Their Enhanced Electroresponsive Activity", ACS Applied Materials & Interfaces, 10(7), pp. 6570~6579. (2018).
  20. Yoon, C.-M., Jang, Y., Lee, S. and Jang, J., "Dual electric and magnetic responsivity of smart fluids containing multilayered magnetite-embedded core/shell silica/titania nanoparticles having an outermost silica shell", Journal of Materials Chemistry C, 6(38), pp. 10241~10249. (2018). https://doi.org/10.1039/C8TC03677B
  21. Yoon, C.-M., Jang, Y., Noh, J., Kim, J., Lee, K. and Jang, J., "Enhanced Electrorheological Performance of Mixed Silica Nanomaterial Geometry", ACS Applied Materials & Interfaces, 9(41), pp. 36358~36367. (2017).
  22. Kim, H.-Y., Jekal, S., Lee, N., Sa, M., Kim, D. H., Kim, M. S., Kim, J. and Yoon, C.-M., "Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System", Journal of Korea Organic Resource Recycling Association, 31(1), pp. 47~56. (2023).
  23. Kreyling, W. G., Semmler-Behnke, M. and Chaudhry, Q., "A complementary definition of nanomaterial", Nano Today, 5(3), pp. 165~168. (2010). https://doi.org/10.1016/j.nantod.2010.03.004
  24. Mazzola, L., "Commercializing nanotechnology", Nature Biotechnology, 21, pp. 1137~1143. (2003). https://doi.org/10.1038/nbt1003-1137
  25. Khan, I., Saeed, K. and Khan, I., "Nanoparticles: Properties, applications and toxicities", Arabian Journal of Chemistry, 12(7), pp. 908~931. (2019).
  26. Baig, N., Kammakakam, I. and Falath, W., "Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges", Materials Advances, 2(6), pp. 1821~1871. (2021).
  27. Mazari, S. A., Ali, E., Abro, R., Khan, F. S. A., Ahmed, I., Ahmed, M., Nizamuddin, S., Siddiqui, T. H., Hossain, N., Mubarak, N. M. and Shah, A., "Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges - A review", Journal of Environmental Chemical Engineering, 9(2), p. 105028. (2021).
  28. H an, X. X., Ji, W., Zhao, B. and Ozaki, Y., "Semiconductor-enhanced Raman scattering: active nanomaterials and applications", Nanoscale, 9(15), pp. 4847~4861. (2017).
  29. Pomerantseva, E., Bonaccorso, F., Cui, Y. and Gogotsi, Y., "Energy storage: The future enabled by nanomaterials", Science, 366(6468), pp. 969. (2019).
  30. Kumar, N. and Ray, S. S., "Synthesis and Functionalization of Nanomaterials", Processing of Polymer-based Nanocomposites, 277, pp. 15~55. (2018). https://doi.org/10.1007/978-3-319-97779-9_2
  31. Fang, J., Zhou, Z., Xiao, M., Lou, Z., Wei, Z. and Shen, G., "Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors", InfoMat, 2(2), pp. 235~433. (2020). https://doi.org/10.1002/inf2.12067
  32. Zhang, L., Wang, J. and Tian, Y., "Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors", Microchimica Acta, 181, pp. 1471~1484. (2014). https://doi.org/10.1007/s00604-014-1203-z
  33. Chen, J.-F., Wang, Y.-H., Guo, F., Wang, X.-M. and Zheng, C., "Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation", Industrial & Engineering Chemistry Research, 39(4), pp. 948~954. (2000).
  34. Chen, S.-L., Dong, P., Yang, G.-H. and Yang, J.-J., "Kinetics of Formation of Monodisperse Colloidal Silica Particles through the Hydrolysis and Condensation of Tetraethylorthosilicate", Industrial & Engineering Chemistry Research, 35(12), pp. 4487~4493. (1996).
  35. Lee, S., Yoon, C.-M., Hong, J.-Y. and Jang, J., "Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio", Journal of Materials Chemistry C, 2(30), pp. 6010~6016. (2014). https://doi.org/10.1039/C4TC00635F
  36. Vrancken, K. C., Coster, L. D., Voort, P. V. D., Grobet, P. J. and Vansant, E. F., "The Role of Silanols in the Modification of Silica Gel with Aminosilanes", Journal of Colloid and Interface Science, 170(1), pp. 71~77. (1995). https://doi.org/10.1006/jcis.1995.1073
  37. Ahmadian-Fard-Fini, S., Salavati-Niasari, M. and Safardoust-Hojaghan, H., "Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4-carbon quantum dots nanocomposite by turmeric precursor", Journal of Materials Science: Materials in Electronics, 28(21), pp. 16502~16214. (2017).
  38. Kaya, H., Ngo, D., Gin, S. and Kim, S. H., "Spectral changes in Si-O-Si stretching band of porous glass network upon ingress of water", Journal of Non-Crystalline Solids, 527, p. 119722. (2020).
  39. Tyagi, P. K., Sharma, S., Tyagi, S., Mishra, A. and Gola, D., "Toxicity assessment of silica nanoparticles, and their conjugates with curcumin on Drosophila melanogaster", Environmental Nanotechnology, Monitoring & Management, 17, p. 100616. (2022).
  40. Jacobs, J. H., Deering, C. E., Sui, R., Cann, A. P., Lesage, K. L. and Marriott, R. A., "The role of carbon dioxide and water in the degradation of zeolite 4A, zeolite 13X and silica gels", New Journal of Chemistry, 47, pp. 5249~5261. (2023). https://doi.org/10.1039/D3NJ00093A
  41. Ndayishimiye, A., Largeteau, A., Mornet, S., Duttine, M., Dourges, M.-A., Denux, D., Verdier, M., Goune, M., Beauvoir, T. H. D., Elissalde, C. and Goglio, G., "Hydrothermal Sintering for Densifigation of Silica. Evidence for the Role of Water", Journal of the European Ceramic Society, 38(4), pp. 1860~1870. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.011
  42. Blin, J. L. and Carteret, C., "Investigation of the Silanols Groups of Mesostructured Silica Prepared Using a Fluorinated Surfactant: Influence of the Hydrothermal Temperature", The Journal of Physical Chemistry C, 111(39), pp. 14380~14388. (2007).