DOI QR코드

DOI QR Code

Ni Foam-Supported Ni Nanoclusters for Enhanced Electrocatalytic Oxygen Evolution Reaction

  • Hoeun Seong (Department of Chemistry, Yonsei University) ;
  • Jinhee Kim (Department of Chemistry, Yonsei University) ;
  • Kiyoung Chang (Department of Chemistry, Yonsei University) ;
  • Hyun-woo Kim (Department of Chemistry, Yonsei University) ;
  • Woojun Choi (Department of Chemistry and Medical Chemistry, Yonsei University) ;
  • Dongil Lee (Department of Chemistry, Yonsei University)
  • Received : 2023.01.13
  • Accepted : 2023.03.07
  • Published : 2023.08.31

Abstract

Developing oxygen evolution reaction (OER) electrocatalysts is essential to accomplish viable CO2 and water electrolysis. Herein, we report the fabrication and OER performance of Ni-foam (NF)-immobilized Ni6 nanoclusters (NCs) (Ni6/NF) prepared by a dip-coating process. The Ni6/NF electrode exhibited a high current density of 500 mA/cm2 for the OER at an overpotential as low as 0.39 V. Ni6/NF exhibited high durability in an alkaline solution without corrosion. Electrokinetic studies revealed that OER can be easily initiated on Ni6 NC with fast electron-transfer rates. Finally, we demonstrated stable CO2-to-CO electroreduction using an NC-based zero-gap CO2 electrolyzer operated at a current density of 100 mA/cm2 and a full-cell potential of 2.0 V for 12 h.

Keywords

Acknowledgement

This work was supported by the Carbon-to-X Project (Project No. 2020M3H7A1096388) through the NRF, funded by the Korea government (MSIT) and the Korea Electric Power Corporation (grant No. R20XO02-23).

References

  1. M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332-337. https://doi.org/10.1038/35104599
  2. P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo and E. H. Sargent, Science, 2019, 364, eaav3506.
  3. W. H. Lee, H. N. Nong, C. H. Choi, K. H. Chae, Y. J. Hwang, B. K. Min, P. Strasser and H.-S. Oh, Appl. Catal. B, 2020, 269, 118820.
  4. E. Fabbri and T. J. Schmidt, ACS Catal., 2018, 8(10), 9765-9774. https://doi.org/10.1021/acscatal.8b02712
  5. A. K. Niaz and H.-T. Lim, J. Electrochem. Sci. Technol., 2022, 13(3), 369-376. https://doi.org/10.33961/jecst.2022.00241
  6. Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3(3), 399-404. https://doi.org/10.1021/jz2016507
  7. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H. N. Nong, R. Schlogl, K. J. J. Mayrhofer and P. Strasser, J. Am. Chem. Soc., 2015, 137(40), 13031-13040. https://doi.org/10.1021/jacs.5b07788
  8. Z. Chen, M. Ju, M. Sun, L. Jin, R. Cai, Z. Wang, L. Dong, L. Peng, X. Long, B. Huang and S. Yang, Angew. Chem. Int. Ed., 2021, 60(17), 9699-9705. https://doi.org/10.1002/anie.202016064
  9. P. Chauhan and B. Lal, J. Electrochem. Sci. Technol., 2022, 13(4), 497-503. https://doi.org/10.33961/jecst.2022.00395
  10. L.-F. Li, Y.-F. Li and Z.-P. Liu, ACS Catal. 2020, 10(4), 2581-2590. https://doi.org/10.1021/acscatal.9b04975
  11. T. Kou, S. Wang, J. L. Hauser, M. Chen, S. R. J. Oliver, Y. Ye, J. Guo and Y. Li, ACS Energy Lett., 2019, 4(3), 622-628. https://doi.org/10.1021/acsenergylett.9b00047
  12. C. Cui, L. Gan, M. Heggen, S. Rudi and P. Strasser, Nature Mater., 2013, 12, 765-771. https://doi.org/10.1038/nmat3668
  13. J. Huang, N. Hormann, E. Oveisi, A. Loiudice, G. L. De Gregorio, O. Andreussi, N. Marzari and R. Buonsanti, Nat. Commun., 2018, 9, 3117.
  14. D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing and X. Yang, Nat. Commun., 2019, 10, 3899.
  15. Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo and L. Guo, Angew. Chem. Int. Ed., 2019, 58(13), 4189-4194. https://doi.org/10.1002/anie.201812601
  16. F. Qin, Z. Zhao, M. K. Alam, Y. Ni, F. Robles-Hernandez, L. Yu, S. Chen, Z. Ren, Z. Wang and J. Bao, ACS Energy Lett., 2018, 3(3), 546-554. https://doi.org/10.1021/acsenergylett.7b01335
  17. K. Kwak, U. P. Azad, W. Choi, K. Pyo, M. Jang and D. Lee, ChemElectroChem, 2016, 3(8), 1253-1260. https://doi.org/10.1002/celc.201600154
  18. K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D. Jiang and D. Lee, Nat. Commun., 2017, 8, 14723.
  19. H. Seong, V. Efremov, G. Park, H. Kim, J. S. Yoo and D. Lee, Angew. Chem. Int. Ed., 2021, 60(26), 14563-14570. https://doi.org/10.1002/anie.202102887
  20. W. Choi, H. Seong, V. Efremov, Y. Lee, S. Im, D.-H. Lim, J. S. Yoo and D. Lee, J. Chem. Phys., 2021, 155, 014305.
  21. M. Kim, Q. Tang, A. V. Narendra Kumar, K. Kwak, W. Choi, D. Jiang and D. Lee, J. Phys. Chem. Lett., 2018, 9(5), 982-989. https://doi.org/10.1021/acs.jpclett.7b03261
  22. V. D. Thanthirige, M. Kim, W. Choi, K. Kwak, D. Lee and G. Ramakrishna, J. Phys. Chem. C, 2016, 120(40), 23180-23188. https://doi.org/10.1021/acs.jpcc.6b09386
  23. D. C. Lim, J. H. Jeong, K. Hong, S. Nho, J.-Y. Lee, Q. V. Hoang, S. K. Lee, K. Pyo, D. Lee and S. Cho, Prog. Photovolt., 2018, 26(3), 188-195. https://doi.org/10.1002/pip.2965
  24. R. Jin, C. Zeng, M. Zhou and Y. Chen, Chem. Rev., 2016, 116(18), 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
  25. P. Woodward, L. F. Dahl, E. W. Abel and B. C. Crosse, J. Am. Chem. Soc., 1965, 87(22), 5251-5253. https://doi.org/10.1021/ja00950a049
  26. C. Zhang, T. Matsumoto, M. Samoc, S. Petrie, S. Meng, T. Christopher Corkery, R. Stranger, J. Zhang, M. G. Humphrey and K. Tatsumi, Angew. Chem. Int. Ed., 2010, 49(25), 4209-4212. https://doi.org/10.1002/anie.200907074
  27. W. Zhang, J. Hong, J. Zheng, Z. Huang, J. Zhou and R. Xu, J. Am. Chem. Soc., 2011, 133(51), 20680-20683. https://doi.org/10.1021/ja208555h
  28. A. Datta, N. S. John, G. U. Kulkarni and S. K. Pati, J. Phys. Chem. A, 2005, 109(51), 11647-11649. https://doi.org/10.1021/jp055344w
  29. A. Munoz-Castro, J. Phys. Chem. A, 2011, 115(39), 10789-10794. https://doi.org/10.1021/jp2028438
  30. D. R. Kauffman, D. Alfonso, D. N. Tafen, J. Lekse, C. Wang, X. Deng, J. Lee, H. Jang, J. Lee, S. Kumar and C. Matranga, ACS Catal., 2016, 6(2), 1225-1234. https://doi.org/10.1021/acscatal.5b02633
  31. K. S. Joya, L. Sinatra, L. G. AbdulHalim, C. P. Joshi, M. N. Hedhili, O. M. Bakr and I. Hussain, Nanoscale, 2016, 8, 9695-9703. https://doi.org/10.1039/C6NR00709K
  32. S. Srinivasan, Z. Liu, S. House and R. Jin, Inorg. Chem., 2023, 62(5), 1875-1884. https://doi.org/10.1021/acs.inorgchem.2c01292
  33. S. Funaki, T. Kawawaki, T. Okada, K. Takemae, S. Hossain, Y. Niihori, T. Naito, M. Takagi, T. Shimazaki, S. Kikkawa, S. Yamazoe, M. Tachikawa and Y. Negishi, Nanoscale, 2023, 15, 5201-5208.
  34. S. Moller, S. Barwe, J. Masa, D. Wintrich, S. Seisel, H. Baltruschat and W. Schuhmann, Angew. Chem. Int. Ed., 2020, 59(4), 1585-1589. https://doi.org/10.1002/anie.201909475
  35. Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker and R. Schlogl, Catal. Today, 2017, 295, 32-40. https://doi.org/10.1016/j.cattod.2017.07.013
  36. Y. Sato, N. Yamada, S. Kitano, D. Kowalski, Y. Aoki and H. Habazaki, J. Mater. Chem. A, 2022, 10, 8208-8217. https://doi.org/10.1039/D2TA00133K
  37. H. N. Kagalwala, E. Gottlieb, G. Li, T. Li, R. Jin and S. Bernhard, Inorg. Chem., 2013, 52(15), 9094-9101. https://doi.org/10.1021/ic4013069
  38. B. Kim, H. Seong, J. T. Song, K. Kwak, H. Song, Y. C. Tan, G. Park, D. Lee and J. Oh, ACS Energy Lett., 2020, 5(3), 749-757. https://doi.org/10.1021/acsenergylett.9b02511
  39. J. W. Shin, K. Eom and D. Moon, J. Synchrotron Rad., 2016, 23(1), 369-373. https://doi.org/10.1107/S1600577515021633
  40. Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Academic Press, 1997, 276, 307-326.
  41. G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8. https://doi.org/10.1107/S2053229614024218
  42. G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8. https://doi.org/10.1107/S2053229614024218
  43. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/S0021889808042726
  44. P. V. D. Sluis and A. L. Spek, Acta Cryst., 1990, A46, 194-201. https://doi.org/10.1107/S0108767389011189
  45. A. L. Spek, Acta Cryst., 2015, C71, 9-18. https://doi.org/10.1107/S2053229614024929
  46. H. Seong, M. Choi, S. Park, H. Kim, J. Kim, W. Kim, J. S. Yoo and D. Lee, ACS Energy Lett., 2022, 7(12), 4177-4184. https://doi.org/10.1021/acsenergylett.2c02018
  47. J. Ge, H.-B. Yao, W. Hu, X.-F. Yu, Y.-X. Yan, L.-B. Mao, H.-H. Li, S.-S. Li and S.-H. Yu, Nano Energy, 2013, 2(4), 505-513. https://doi.org/10.1016/j.nanoen.2012.12.002
  48. X. Du, Z. Chen, Z. Li, H. Hao, Q. Zeng, C. Dong and B. Yang, Adv. Energy Mater., 2014, 4(9), 1400135.
  49. G.-F. Li, D. Yang and P.-Y. A. Chuang, ACS Catal., 2018, 8(12), 11688-11698. https://doi.org/10.1021/acscatal.8b02217
  50. Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu and Z. Shao, Adv. Energy Mater., 2017, 7(8), 1602122.
  51. Z. Song, K. Wang, Q. Sun, L. Zhang, J. Li, D. Li, P.-W. Sze, Y. Liang, X. Sun, X.-Z. Fu and J.-L. Luo, Adv. Sci., 2021, 8(14), 2100498.
  52. W. Zhong, Z. Lin, S. Feng, D. Wang, S. Shen, Q. Zhang, L. Gu, Z. Wang and B. Fang, Nanoscale, 2019, 11, 4407-4413. https://doi.org/10.1039/C8NR10163A
  53. C. Hu, L. Zhang and J. Gong, Energy Environ. Sci., 2019, 12, 2620-2645. https://doi.org/10.1039/C9EE01202H
  54. S. Fletcher, J. Solid State Electrochem., 2009, 13, 537-549. https://doi.org/10.1007/s10008-008-0670-8
  55. J. Jiang, F. Sun, S. Zhou, W. Hu, H. Zhang, J. Dong, Z. Jiang, J. Zhao, J. Li, W. Yan and M. Wang, Nat. Commun., 2018, 9, 2885.
  56. H. Chen, P. Kannan, L. Guo, H. Chen and D.-H. Kim, J. Mater. Chem., 2011, 21, 18271-18278. https://doi.org/10.1039/c1jm12080h
  57. S. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert and C. P. Berlinguette, Science, 2019, 365(6451), 367-369. https://doi.org/10.1126/science.aax4608
  58. W. H. Lee, Y.-J. Ko, Y. Choi, S. Y. Lee, C. H. Choi, Y. J. Hwang, B. K. Min, P. Strasser and H.-S. Oh, Nano Energy, 2020, 76, 105030.
  59. W. Ren, X. Tan, C. Jia, A. Krammer, Q. Sun, J. Qu, S. C. Smith, A. Schueler, X. Hu and C. Zhao, Angew. Chem. Int. Ed., 2022, 61(26), e202203335.
  60. X. Y. Zhang, W. J. Li, J. Chen, X. F. Wu, Y. W. Liu, F. Mao, H. Y. Yuan, M. Zhu, S. Dai, H. F. Wang, P. Hu, C. Sun, P. F. Liu and H. G. Yang, Angew. Chem. Int. Ed., 2022, 61(28), e202202298.