DOI QR코드

DOI QR Code

Portable Amperometric Glucose Detection based on NiS/CuS Nanorods Integrated with a Smartphone Device

  • Heyu Zhao (Wenzhou Institute of Hangzhou Dianzi University) ;
  • Kaige Qu (Wenzhou Institute of Hangzhou Dianzi University) ;
  • Haoyong Yin (Wenzhou Institute of Hangzhou Dianzi University) ;
  • Ling Wang (Department of Chemistry, Zhejiang Sci-Tech University) ;
  • Yifan Zheng (Research Center of Analysis and Measurement, Zhejiang University of Technology) ;
  • Shumin Zhao (Wenzhou Institute of Hangzhou Dianzi University) ;
  • Shengji Wu (College of Engineering, Huzhou University)
  • Received : 2023.02.03
  • Accepted : 2023.03.25
  • Published : 2023.08.31

Abstract

Glucose detection is particularly important for clinical diagnosis and personal prevention and control. Herein, the smartphone-based amperometric glucose sensors were constructed using the NiS/CuS nanorods (NRs) as sensing electrodes. The NiS/CuS NRs were prepared through a facile hydrothermal process accompanied by the subsequent vulcanization treatment. The morphological and structural properties of NiS/CuS NRs were characterized with SEM, EDS, XRD, and XPS. Electrochemical measurements including cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy display that NiS/CuS NRs can act as highly efficient electrocatalyst for glucose detection. The NiS/CuS NRs electrodes present a wide detection range of 1-8000 µM for glucose sensing with the sensitivity of 956.38 µA·mM-1·cm-2. The detection limit was 0.35 µM (S/N=3). When employed in smartphone-based glucose sensing device, they also display a high sensitivity of 738.09 µA·mM-1·cm-2 and low detection limit of 1.67 µM. Moreover, the smartphone-based glucose sensing device also presents favorable feasibility in determination of glucose in serum samples with the recoveries ranging between 99.5 and 105.8%. The results may provide a promising viewpoint to design other new portable glucose sensors.

Keywords

Acknowledgement

This work is financially supported by National Nature Science Foundation of Zhejiang Province (No. Y19E060021).

References

  1. H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B. B. Duncan, C. Stein, A. Basit, J. C. N. Chan, J. C. Mbanya, M. E. Pavkov, A. Ramachandaran, S. H. Wild, S. James, W. H. Herman, P. Zhang, C. Bommer, S. Kuo, E. J. Boyko, and D. J. Magliano, Diabetes Res. Clin. Pract., 2022, 183, 109119.
  2. R. A. Babel and M. P. Dandekar, Curr. Diabetes Rev., 2021, 17(4), 457-473. https://doi.org/10.2174/1573399816666201103143818
  3. D. Porte Jr. and M. W. Schwartz, Science, 1996, 272(5262), 699.
  4. W.-Q. Xie, Y.-X. Gong, and K.-X. Yu, J. Chromatogr. A, 2017, 1520, 143-146. https://doi.org/10.1016/j.chroma.2017.09.018
  5. O. Kap, V. Kilic, J. G. Hardy, and N. Horzum, Analyst, 2021,146, 2784-2806. https://doi.org/10.1039/D0AN02031A
  6. X. Sun, Anal. Chim. Acta, 2022, 1206, 339226.
  7. L. Dong, S. Ren, X. Zhang, Y. Yang, Q. Wu, and T. Lei, Carbohydr. Polym., 2023, 303, 120463. https://doi.org/10.1016/j.carbpol.2022.120463
  8. Y. Zhu, Y. Qi, M. Xu, and J. Luo, Colloids Surf. A: Physicochem. Eng. Asp., 2023, 661, 130908.
  9. Y. Liang, H. Li, L. Fan, R. Li, Y. Cui, X. Ji, H. Xiao, J. Hu, and L. Wang, Colloids Surf. A: Physicochem. Eng. Asp., 2022, 633, 127797. https://doi.org/10.1016/j.colsurfa.2021.127797
  10. H. Yang, Y. Hu, X. Yin, J. Huang, C. Qiao, Z. Hu, C. He, D. Huo, and C. Hou, Analyst, 2023, 148, 153-162.
  11. Z.-W. Kang, J.-Y. Zhang, Z.-Z. Li, R. K. Kankala, S.-B. Wang, and A.-Z. Chen, Nano Res., 2023.
  12. H. Zhao, H. Yin, Z. Zhang, J. Gong, S. Zhao, Q. Nie, and L. Wang, Funct. Mater. Lett., 2022, 15(5), 2250023.
  13. H. A. Jasim and O. A. A. Dakhil, J. Nanopart. Res., 2022, 24, 212.
  14. Z. He, X. Tang, Y. Zhang, H. Yu, Z. Zou, K. Huang, K. Xue, and X. Xiong, Catal. Lett., 2022, 152, 3517-3525. https://doi.org/10.1007/s10562-022-03931-6
  15. F. Gunes, A. Aykac, M. Erol, C. Erdem, H. Hano, B. Uzunbayir, M. Sen, and A. Erdem, J. Alloys Compd., 2022, 895, 162688.
  16. A. Mustafa, I. A. Alsafari, H. H. Somaily, S. Yousaf, M. I. Din, J. Rahman, M. Shahid, M. Ashraf, and M. F. Warsi, Phys. B: Condens. Matter, 2023, 648, 414404. https://doi.org/10.1016/j.physb.2022.414404
  17. A. Parab, P. A. Borade, T. Sant, and S. M. Jejurikar, Surf. Interfaces, 2023, 37, 102627.
  18. M. Li, K. Huan, D. Deng, X. Yan, Y. Li, and L. Luo, Colloids Surf. B: Biointerfaces, 2023, 222, 113047.
  19. X. Lang, D. Chu, Y. Wang, D. Ge, and X. Chen, Biosensors, 2022, 12(10), 823.
  20. A. Meng, X. Yuan, Z. Li, K. Zhao, L. Sheng, and Q. Li, Sens. Actuators B: Chem., 2019, 291, 9-16. https://doi.org/10.1016/j.snb.2019.04.042
  21. G. Li, G. Xie, D. Chen, C. Gong, X. Chen, Q. Zhang, B. Pang, Y. Zhang, C. Li, J. Hu, Y. Chen, L. Yu, and L. Dong, Appl. Surf. Sci., 2022, 585, 152683.
  22. M. Gharani, A. Bahari, and S. Ghasemi, Synth. Met., 2023, 293, 117252.
  23. Q. Chen, S. Sun, T. Zhai, M. Yang, X. Zhao, and H. Xia, Adv. Energy Mater., 2018, 8(19), 1800054.
  24. X. Su, Y. Zhang, Z. Jia, S. Zhang, Y. Gao, Y. Huang, C. Xu, and E. Liu, Microchem. J., 2023, 187, 108331.
  25. B. Yang, N. Han, L. Zhang, S. Yi, Z. Zhang, Y. Wang, Y. Zhou, D. Chen, and Y. Gao, Appl. Surf. Sci., 2020, 534, 147596.
  26. P. Luo, H. Zhang, L. Liu, Y. Zhang, J. Deng, C. Xu, N. Hu, and Y. Wang, ACS Appl. Mater. Interfaces, 2017, 9(3), 2500-2508. https://doi.org/10.1021/acsami.6b13984
  27. L. Shahhoseini, R. Mohammadi, B. Ghanbari, and S. Shahrokhian, Appl. Surf. Sci., 2019, 478, 361-372. https://doi.org/10.1016/j.apsusc.2019.01.240
  28. Z. Wang, T. Liu, M. Asif, Y. Yu, W. Wang, H. Wang, F. Xiao, and H. Liu, ACS Appl. Mater. Interfaces, 2018, 10(33), 27936-27946. https://doi.org/10.1021/acsami.8b07868
  29. J. Yang, H. Ye, Z. Zhang, F. Zhao, and B. Zeng, Sens. Actuators B Chem., 2017, 242, 728-735. https://doi.org/10.1016/j.snb.2016.11.122
  30. Y. Song, C. Wei, J. He, X. Li, X. Lu, and L. Wang, Sens. Actuators B Chem., 2015, 220, 1056-1063. https://doi.org/10.1016/j.snb.2015.06.052
  31. Y. Xu, J. Zhao, L. Qin, X. Tang, B. Wu, and Y. Xiang, Sens. Actuators Rep., 2022, 4, 100090.
  32. P. K. Kannan and C. S. Rout, Chem. Eur. J., 2015, 21(26), 9355-9359. https://doi.org/10.1002/chem.201500851
  33. M. Ramesh, C. Sankar, S. Umamatheswari, J. Balamurugan, R. Jayavel, and M. Gowran, Int. J. Biol. Macromol., 2023, 226, 618-627.
  34. M. Waqas, L. Wu, H. Tang, C. Liu, Y. Fan, Z. Jiang, X. Wang, J. Zhong, and W. Chen, ACS Appl. Nano Mater., 2020, 3(5), 4788-4798. https://doi.org/10.1021/acsanm.0c00847
  35. M. Ranjani, Y. Sathishkumar, Y. S. Lee, D. Jin Yoo, A. R. Kim, and G. Gnana kumar, RSC Adv., 2015, 5, 57804-57814. https://doi.org/10.1039/C5RA08471G