DOI QR코드

DOI QR Code

Characterization of Low-Temperature Enzymatic Reactions through Heterologous Expression and Functional Analysis of Two Beta-Glucosidases from the Termite Symbiotic Bacterium Elizabethkingia miricola Strain BM10

  • Dongmin LEE (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Tae-Jong KIM (Department of Forest Products and Biotechnology, Kookmin University)
  • 투고 : 2023.05.02
  • 심사 : 2023.06.10
  • 발행 : 2023.07.25

초록

Lower termites need symbiotic microbes for cellulose digestion. Elizabethkingia miricola strain BM10 has been proposed as a symbiotic microbe that assists in low-temperature digestion and metabolism of Reticulitermes speratus KMT1, a termite on Bukhan Mountain, Seoul, Korea. In E. miricola strain BM10, β-glucosidase genes expressed at 10℃ were identified, and the psychrophilic enzymatic characteristic was confirmed by heterogeneously expressed proteins. Crude β-glucosidase in the culture broth of E. miricola strain BM10 showed specific enzymatic properties, and its substrate affinity was 4.69 times higher than that of Cellic CTec2. Among the genes proposed as β-glucosidase, two genes, bglB_1 and bglA_2, whose gene expression was more than doubled at 10℃ than at 30℃, were identified. They were heterogeneously expressed in Escherichia coli and identified as psychrophilic enzymes with an optimal reaction temperature of about 20℃-25℃. In this study, E. miricola strain BM10, a symbiotic bacterium of lower termites, produced psychrophilic β-glucosidases that contribute to the spread of the low-temperature habitat of a lower termite, R. speratus KMT1.

키워드

과제정보

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. 2023473B10-2325-EE02)' provided by Korea Forest Service (Korea Forestry Promotion Institute).

참고문헌

  1. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylonwood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  2. Adfa, M., Wiradimafan, K., Pratama, R.F., Sanjaya, A., Triawan, D.A., Yudha, S.S., Ninomiya, M., Rafi, M., Koketsu, M. 2023. Anti-termite activity of Azadirachta excelsa seed kernel and its isolated compound against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 51(3): 157-172. https://doi.org/10.5658/WOOD.2023.51.3.157
  3. Ahn, H.H., Kim, T.J. 2021. Three endogenous cellulases from termite, Reticulitermes speratus KMT001. Archives of Insect Biochemistry and Physiology 106(3): e21766.
  4. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. https://doi.org/10.5658/WOOD.2022.50.6.458
  5. Arora, J., Kinjo, Y., Sobotnik, J., Bucek, A., Clitheroe, C., Stiblik, P., Roisin, Y., Zifcakova, L., Park, Y.C., Kim, K.Y., Sillam-Dusses, D., Herve, V., Lo, N., Tokuda, G., Brune, A., Bourguignon, T. 2022. The functional evolution of termite gut microbiota. Microbiome 10(1): 78.
  6. Arsyad, W.O.M., Efiyanti, L., Trisatya, D.R. 2020. Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5): 641-650. https://doi.org/10.5658/WOOD.2020.48.5.641
  7. Bockwoldt, J.A., Ehrmann, M.A. 2022. Characterisation of recombinant GH 3 β-glucosidase from β-glucan producing Levilactobacillus brevis TMW 1.2112. Antonie van Leeuwenhoek 115(8): 955-968. https://doi.org/10.1007/s10482-022-01751-7
  8. Bourguignon, T., Lo, N., Sobotnik, J., Sillam-Dusses, D., Roisin, Y., Evans, T.A. 2016. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proceedings of the Royal Society B: Biological Sciences 283(1827): 20160179.
  9. Cahyono, T.D., Yanti, H., Anisah, L.N., Massijaya, M.Y., Iswanto, A.H. 2020. Linear expansion and durability of a composite boards (MDF laminated using three selected wood veneers) against drywood termites. Journal of the Korean Wood Science and Technology 48(6): 907-916. https://doi.org/10.5658/WOOD.2020.48.6.907
  10. Cho, M.J., Kim, Y.H., Shin, K., Kim, Y.K., Kim, Y.S., Kim, T.J. 2010a. Symbiotic adaptation of bacteria in the gut of Reticulitermes speratus: Low endo-β-1,4-glucanase activity. Biochemical and Biophy- sical Research Communications 395(3): 432-435. https://doi.org/10.1016/j.bbrc.2010.04.048
  11. Cho, M.J., Shin, K., Kim, Y.K., Kim, Y.S., Kim, T.J. 2010b. Phylogenetic analysis of Reticulitermes speratus using the mitochondrial cytochrome C oxidase subunit I gene. Journal of the Korean Wood Science and Technology 38(2): 135-139. https://doi.org/10.5658/WOOD.2010.38.2.135
  12. Clarke, M.W., Thompson, G.J., Sinclair, B.J. 2013. Cold tolerance of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae), in Ontario. Environmental Entomology 42(4): 805-810. https://doi.org/10.1603/EN12348
  13. DelPozo, M.V., Fernandez-Arrojo, L., Gil-Martinez, J., Montesinos, A., Chernikova, T.N., Nechitaylo, T.Y., Waliszek, A., Tortajada, M., Rojas, A., Huws, S.A., Golyshina, O.V., Newbold, C.J., Polaina, J., Ferrer, M., Golyshin, P.N. 2012. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnology for Biofuels 5: 73.
  14. EllaNkogo, L.F., Bopenga Bopenga, C.S.A., Ngohang, F.E., Mengome, L.E., Aboughe Angone, S., Edou Engonga, P. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from Gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125. https://doi.org/10.5658/WOOD.2022.50.2.113
  15. Govorushko, S. 2019. Economic and ecological importance of termites: A global review. Entomological Science 22(1): 21-35. https://doi.org/10.1111/ens.12328
  16. Im, I.G., Han, G.S. 2020. Laboratory evaluation of the marking effect of Sudan Red 7B on subterranean termites (Reticulitermes speratus) in Republic of Korea. Journal of the Korean Wood Science and Technology 48(5): 745-754. https://doi.org/10.5658/WOOD.2020.48.5.745
  17. Kim, M.J., Choi, Y.S., Lee, J., Kim, J.J., Kim, G.H. 2012. Molecular characteristics of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae) from Korea. Annals of the Entomological Society of America 105(1): 97-102. https://doi.org/10.1603/AN11078
  18. Kumar, R., Singh, S., Singh, O.V. 2008. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology 35(5): 377-391. https://doi.org/10.1007/s10295-008-0327-8
  19. Lacey, M.J., Lenz, M., Evans, T.A. 2010. Cryoprotection in dampwood termites (Termopsidae, Isoptera). Journal of Insect Physiology 56(1): 1-7. https://doi.org/10.1016/j.jinsphys.2009.07.014
  20. Lee, D., Kim, Y.K., Kim, Y.S., Kim, T.J. 2015. Complete genome sequence of Elizabethkingia sp. BM10, a symbiotic bacterium of the wood-feeding termite Reticulitermes speratus KMT1. Genome Announcements 3(5): e01181-15.
  21. Lee, D., Kim, Y.S., Kim, Y.K., Kim, T.J. 2018. Symbiotic bacterial flora changes in response to low temperature in Reticulitermes speratus KMT001. Journal of the Korean Wood Science and Technology 46(6): 713-725. https://doi.org/10.5658/WOOD.2018.46.6.713
  22. Lee, J.M., Kim, Y.H., Hong, J.Y., Lim, B., Park, J.H. 2020. Exploration of preservatives that inhibit wood feeding by inhibiting termite intestinal enzyme activity. Journal of the Korean Wood Science and Technology 48(3): 376-392. https://doi.org/10.5658/WOOD.2020.48.3.376
  23. Lobryde Bruyn, L., Conacher, A.J. 1990. The role of termites and ants in soil modification: A review. Australian Journal of Soil Research 28(1): 55-93.
  24. Oramahi, H.A., Tindaon, M.J., Nurhaida, N., Diba, F., Yanti, H. 2022. Termicidal activity and chemical components of wood vinegar from nipah fruit against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 50(5): 315-324. https://doi.org/10.5658/WOOD.2022.50.5.315
  25. Otagiri, M., Lopez, C.M., Kitamoto, K., Arioka, M., Kudo, T., Moriya, S. 2013. Heterologous expression and characterization of a glycoside hydrolase family 45 endo-β-1,4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Applied Biochemistry and Biotechnology 169(6): 1910-1918. https://doi.org/10.1007/s12010-012-9992-1
  26. Peterson, B.F., Scharf, M.E. 2016. Lower termite associations with microbes: Synergy, protection, and interplay. Frontiers in Microbiology 7: 422.
  27. Priadi, T., Putra, G.S., Cahyono, T.D. 2023. Reliability of the impregnated boron compounds, citric acid-and heat-treated samama (Anthocephalus macro- phyllus) wood against the fungal and termite attacks. Journal of the Korean Wood Science and Technology 51(1): 49-57. https://doi.org/10.5658/WOOD.2023.51.1.49
  28. Pyeon, H.M., Lee, Y.S., Choi, Y.L. 2019. Cloning, purification, and characterization of GH3 β-glucosidase, MtBgl85, from Microbulbifer thermotolerans DAU221. PeerJ 7: e7106.
  29. Singh, N., Sithole, B., Kumar, A., Govinden, R. 2023. A glucose tolerant β-glucosidase from a newly isolated Neofusicoccum parvums train F7: Production, purification, and characterization. Scientific Reports 13(1): 5134.
  30. Su, N.Y., Scheffrahn, R.H. 2000. Termites as Pests of Buildings. In: Termites: Evolution, Sociality, Symbioses, Ecology, Ed. by Abe, T., Bignell, D.E., and Higashi, M. Springer, Dordrecht, Netherlands. pp. 437-453.
  31. Takata, M., Konishi, T., Nagai, S., Wu, Y., Nozaki, T., Tasaki, E., Matsuura, K. 2023. Discovery of an underground chamber to protect kings and queens during winter in temperate termites. Scientific Reports 13(1): 8809.
  32. Tokuda, G., Watanabe, H. 2007. Hidden cellulases in termites: Revision of an old hypothesis. Biology Letters 3(3): 336-339. https://doi.org/10.1098/rsbl.2007.0073
  33. Waidele, L., Korb, J., Voolstra, C.R., Dedeine, F., Staubach, F. 2019. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Animal Microbiome 1(1): 13.
  34. Yan, T.R., Lin, C.L. 1997. Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Bioscience, Biotechnology, and Biochemistry 61(6): 965-970. https://doi.org/10.1271/bbb.61.965
  35. Zhou, J., Zhang, R., Shi, P., Huang, H., Meng, K., Yuan, T., Yang, P., Yao, B. 2011. A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation. Applied Microbiology and Biotechnology 92(2): 305-315. https://doi.org/10.1007/s00253-011-3323-2