DOI QR코드

DOI QR Code

The Antitermitic and Antifungal Activities and Composition of Vinegar from Durian Wood (Durio sp.)

  • Awan SUPRIANTO (Faculty of Forestry, Tanjungpura University) ;
  • Hasan Ashari ORAMAHI (Faculty of Forestry, Tanjungpura University) ;
  • Farah DIBA (Faculty of Forestry, Tanjungpura University) ;
  • Gusti HARDIANSYAH (Faculty of Forestry, Tanjungpura University) ;
  • M. Sofwan ANWARI (Faculty of Forestry, Tanjungpura University)
  • 투고 : 2023.03.07
  • 심사 : 2023.06.13
  • 발행 : 2023.07.25

초록

Chemical characterization of vinegars obtained from Durian wood (Durio sp.) and their termicidal activity against Coptotermes curvignathus and antifungal activity against Schizophyllum commune were evaluated. The process of pyrolysis produced wood vinegars at three distinct temperature: 350℃, 400℃, and 450℃. To determine their effectiveness against fungal growth, the vinegars were tested using a Petri dish with 1.0%, 2.0%, 3.0%, and 4.0% (v/v) against S. commune. In the experiment, termicidal activities were evaluated using a no-choice test for C. curvignathus with 3.0%, 6.0%, 9.0%, and 12.0% (v/v). The wood vinegar exhibited antitermitic activity to C. curvignathus workers in the no-choice experiment; For vinegar produced at 450℃, a 6% concentration was required to achieve 100% mortality against C. curvignathus. In addition, a 12% vinegar produced at 450℃ resulted in the lowest mass loss of treated filter paper, which was 20.00%. Furthermore, all the wood vinegars exhibited antifungal activities against S. commune at concentration of 2.0%. The dominant chemical components of wood vinegar produced at temperature of 350℃, 400℃, and 450℃ were 2-methoxy-phenol, 4-ethyl-2-methoxy-phenol, 4-ethyl-2-methoxy-phenol, 3.5-dimethoxy-4-hydroxytoluene, and creosol.

키워드

과제정보

The authors would like to acknowledge the financial support of the Ministry of Education, Culture, Research, and Technology for the 2022 Research Grant (Penelitian Hibah Tesis Master).

참고문헌

  1. Adfa, M., Kusnanda, A.J., Livandri, F., Rahmad, R., Darwis, W., Efdi, M., Ninomiya, M., Koketsu, M. 2017. Insecticidal activity of Toona sinensis against Coptotermes curvignathus Holmgren. Rasayan Journal of Chemistry 10(1): 153-159.
  2. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudah, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  3. Adfa, M., Wiradimafan, K., Pratama, R.F., Sanjaya, A., Triawan, D.A., Yudha, S.S., Ninomiya, M., Rafi, M., Koketsu, M. 2023. Anti-termite activity of Azadirachta excelsa seed kernel and its isolated compound against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 51(3): 157-172. https://doi.org/10.5658/WOOD.2023.51.3.157
  4. Akkus, M., Akcay, C., Yalcin, M. 2022. Antifungal and larvicidal effects of wood vinegar on wood-destroying fungi and insects. Maderas. Ciencia y Tecnologia 24(37): 1-10.
  5. Aly, H.M., Wahba, T.F., Hassan, N.A. 2022. Pyroligneous acid derived from Ficus benjamina wastes synergize deltamethrin against Sitophilus oryzae. Egyptian Academic Journal of Biological Sciences F Toxicology & Pest Control 14(1): 47-54. https://doi.org/10.21608/eajbsf.2022.215385
  6. Anggraini, R., Khabibi, J., Ridho, M.R. 2021. Utilization of wood vinegar as a natural preservative for sengon wood (Falcataria moluccana Miq.) against fungal attack (Schizophyllum commune fries). Jurnal Sylva Lestari 9(2): 302-313. https://doi.org/10.23960/jsl29302-313
  7. Ariyanti, Budiarso, E., Budi, A.S., Kusuma, I.W. 2017. Natural preservative from the liquid smoke of ebony wood as anti-subterranean termites (Coptotermes curvignathus Holmgren). Journal of Biodiversity and Environmental Sciences 11(3): 81-90.
  8. Arsyad, W.O.M., Efiyanti, L., Trisatya, D.R. 2020. Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5): 641-650. https://doi.org/10.5658/WOOD.2020.48.5.641
  9. Bedmutha, R., Booker, C.J., Ferrante, L., Briens, C., Berruti, F., Yeung, K.K.C., Scott, I., Conn, K. 2011. Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. Journal of Analytical and Applied Pyrolysis 90(2): 224-231. https://doi.org/10.1016/j.jaap.2010.12.011
  10. Darmadji, P., Triyudiana, H. 2006. Proses pemurnian asap cair dan simulasi akumulasi kadar benzopyrene pada proses perendaman ikan. Agritech 2: 94-103.
  11. Desvita, H., Faisal, M., Mahidin, Suhendrayatna. 2021. Characteristic of liquid smoke produced from slow pyrolysis of cacao pod shells (Theobroma cacao L). International Journal of GEOMATE 20(80): 17-22. https://doi.org/10.21660/2021.80.6154
  12. Djarwanto, D., Suprapti, S., Hutapea, F.J. 2018. Kemampuan sepuluh strain jamur melapukkan empat jenis kayu asal manokwari. Jurnal Penelitian Hasil Hutan 36(2): 129-138. https://doi.org/10.20886/jphh.2018.36.2.129-138
  13. Faisal, M., Yelvia Sunarti, A.R., Desvita, H. 2018. Characteristics of liquid smoke from the pyrolysis of Durian peel waste at moderate temperatures. Rasayan Journal of Chemistry 11(2): 871-876. https://doi.org/10.31788/RJC.2018.1123035
  14. Ganapaty, S., Thomas, P.S., Fotso, S., Laatsch, H. 2004. Antitermiic quinones from Diospyros sylvatica. Phytochemistry 65(9): 1265-1271. https://doi.org/10.1016/j.phytochem.2004.03.011
  15. Gao, T., Bian, R., Joseph, S., Taherymoosavi, S., Mitchell, D.R.G., Munroe, P., Xu, J., Shi, J. 2020. Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Science of the Total Environment 725: 138359.
  16. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. https://doi.org/10.5658/WOOD.2020.48.1.1
  17. Hashemi, S.M., Safavi, S.A., Estaji, A. 2014. Insecticidal activity of wood vinegar mixed with Salvia leriifolia (Benth.) extract against Lasioderma serricorne (F.). Biharean Biologist 8(1): 5-11.
  18. Imaningsih, W., Mariana, Junaidi, A.B., Adventaria, D. 2022. Inhibitory effect of ulin wood liquid smoke and gogo rice endophytic fungi against pathogen Pyricularia oryzae. BIOTROPIA: The Southeast Asian Journal of Tropical Biology 29(1): 18-27. https://doi.org/10.11598/btb.2022.29.1.1568
  19. Kadir, R., Sarif Mohd Ali, M., Kartal, S.N., Elham, P., Mohd Ali, N.A., Awang, A.F. 2021. Chemical characterization of pyrolysis liquids from Dyera costulata and evaluation of their bio-efficiency against subterranean termites, Coptotermes curvignathus. European Journal of Wood and Wood Products 80(1): 45-56. https://doi.org/10.1007/s00107-021-01732-z
  20. Kang, H.Y., Matsushima, N., Sameshima, K., Takamura, N. 1990. Termite resistance tests of hardwoods of Kochi growth. I. The strong termiticidal activity of Kagonoki (Litsea coreana). Mokuzai Gakkaishi = Journal of the Japan Wood Research Society 36(1): 78-84.
  21. Kartal, S.N., Terzi, E., Kose, C., Hofmeyr, J., Imamura, Y. 2011. Efficacy of tar oil recovered during slow pyrolysis of macadamia nutshells. International Biodeterioration & Biodegradation 65(2): 369-373. https://doi.org/10.1016/j.ibiod.2010.08.011
  22. Laouge, Z.B., Ciggin, A.S., Merdun, H. 2020. Optimization and characterization of bio-oil from fast pyrolysis of pearl millet and Sida cordifolia L. by using response surface methodology. Fuel 274: 117842.
  23. Lee, C.L., Chin, K.L., Khoo, P.S., Hafizuddin, M.S., H'ng, P.S. 2022. Production and potential application of pyroligneous acids from rubberwood and oil palm trunk as wood preservatives through vacuum-pressure impregnation treatment. Polymers 14(18): 3863.
  24. Lee, J.M., Kim, Y.H., Hong, J.Y., Lim, B., Park, J.H. 2020. Exploration of preservatives that inhibit wood feeding by inhibiting termite intestinal enzyme activity. Journal of the Korean Wood Science and Technology 48(3): 376-392. https://doi.org/10.5658/WOOD.2020.48.3.376
  25. Li, J., Ma, X., Duan, H. 2022. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from Salix sammophila branches. Wood Research 67(1): 1-10.
  26. Liu, X., Wang, J., Feng, X., Yu, J. 2021. Wood vinegar resulting from the pyrolysis of apple tree branches for annual bluegrass control. Industrial Crops and Products 174: 114193.
  27. Meyer, J.R. 2005. Isoptera. https://bugscope.beckman.illinois.edu/pdfs/insects/Isoptera.pdf
  28. Mun, S.P., Ku, C.S. 2010. Pyrolysis GC-MS analysis of tars formed during the aging of wood and bamboo crude vinegars. Journal of Wood Science 56: 47-52. https://doi.org/10.1007/s10086-009-1054-0
  29. Na, H., Kim, T.J. 2022. Synergistic antifungal activity of Phellodendri Cortex and Magnoliae Cortex against Candida albicans. Journal of the Korean Wood Science and Technology 50(1): 12-30. https://doi.org/10.5658/WOOD.2022.50.1.12
  30. Nkogo, L.F.E., Bopenga, C.S.A.B., Ngohang, F.E., Mengome, L.E., Angone, S.A., Engonga, P.E. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (harms) J. Leonard (Kevazingo) bark extracts from gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125.
  31. Omulo, G., Willett, S., Seay, J., Banadda, N., Kabenge, I., Zziwa, A., Kiggundu, N. 2017. Characterization of slow pyrolysis wood vinegar and tar from banana wastes biomass as potential organic pesticides. Journal of Sustainable Development 10(3): 81-92. https://doi.org/10.5539/jsd.v10n3p81
  32. Oramahi, H.A., Diba, F., Juanita. 2021a. Anti-termites properties of liquid smoke from bintangur wood. Jurnal Sylva Lestari 9(3): 400-410. https://doi.org/10.23960/jsl.v9i3.515
  33. Oramahi, H. A., Diba, F., Wahdina. 2010. Efikasi asap cair dari tandan kosong kelapa sawit (TKKS) dalam penekanan perkembangan jamur Aspergillus niger. Jurnal Hama dan Penyakit Tumbuhan Tropika 10(2): 146-153. https://doi.org/10.23960/j.hptt.210146-153
  34. Oramahi, H.A., Kustiati, Wardoyo, E.R.P. 2022a. Optimization of liquid smoke from Shorea pachyphylla using response surface methodology and its characterization. Science & Technology Indonesia 7(2): 257-262. https://doi.org/10.26554/sti.2022.7.2.257-262
  35. Oramahi, H.A., Rusmiyanto, E. 2021b. Optimization of wood vinegar from pyrolysis of jelutung wood (Dyera lowii hook) by using response surface methodology. Journal of Physics: Conference Series 1940: 012062.
  36. Oramahi, H.A., Tindaon, M.J., Nurhaida, N., Diba, F., Yanti, H. 2022b. Termicidal activity and chemical components of wood vinegar from nipah fruit against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 50(5): 315-324. https://doi.org/10.5658/WOOD.2022.50.5.315
  37. Oramahi, H.A., Wardoyo, E.R.P., Kustiati. 2019. Optimization of pyrolysis condition for bioactive compounds of wood vinegar from oil palm empty bunches using response surface methodology (RSM). IOP Conference Series: Materials Science and Engineering 633: 012058.
  38. Oramahi, H.A., Yoshimura, T., Diba, F., Setyawati, D, Nurhaida. 2018. Antifungal and antitermitic activities of wood vinegar from oil palm trunk. Journal of Wood Science 64(3): 311-317. https://doi.org/10.1007/s10086-018-1703-2
  39. Oramahi, H.A., Yoshimura, T., Rusmiyanto, E., Kustiati, K. 2020. Optimization and characterization of wood vinegar produced by Shorea laevis Ridl wood pyrolysis. Indonesian Journal of Chemistry 20(4): 825-832. https://doi.org/10.22146/ijc.45783
  40. Preston, A.F. 2000. Wood preservation: Trends of today that will influence the industry tomorrow. Forest Products Journal 50(9): 12-19.
  41. Rosalina, Tedja, T., Riani, E., Sugiarti, S. 2016. An environmental friendly pesticide from bintaro (Cerbera odollam Gaertn) liquid smoke for pine wood preservation against a subterranean termite Captotermes curvignathus Holmgren attack. Rasayan Journal of Chemistry 9(3): 438-443.
  42. Shiny, K.S., Remadevi, O.K. 2014. Evaluation of termiticidal activity of coconut shell oil and its comparison to commercial wood preservatives. European Journal of Wood and Wood Products 72(1): 139-141. https://doi.org/10.1007/s00107-013-0755-7
  43. Subekti, N., Yoshimura, T. 2020. Activity of bamboo Wulung's smoke Gigantochloa atroviolace against subterranean termites and fungi attack. AGRIVITA: Journal of Agricultural Science 42(3): 541-547.
  44. Temiz, A., Akbas, S., Panov, D., Terziev, N., Alma, M.H., Parlak, S., Kose, G. 2013. Chemical composition and efficiency of bio-oil obtained from giant cane (Arundo donax L.) as a wood preservative. Bioreseources 8(2): 2084-2098. https://doi.org/10.15376/biores.8.2.2084-2098
  45. Teo, C.L. 2022. Antimicrobial study of pyroligneous extract from Rhizophora apiculate against urinary tract pathogens. Jurnal Teknologi 84(1): 49-55. https://doi.org/10.11113/jurnalteknologi.v84.17417
  46. Theapparat, Y., Chandumpai, A., Leelasuphakul, W., Laemsak, N. 2015. Pyroligneous acids from carbonisation of wood and bamboo: Their components and antifungal activity. Journal of Tropical Forest Science 27(4): 517-526.
  47. Urrutia, R.I., Yeguerman, C., Jesser, E., Gutierrez, V.S., Volpe, M.A., Gonzalez, J.O.W. 2021. Sunflower seed hulls waste as a novel source of insecticidal product: Pyrolysis bio-oil bioactivity on insect pests of stored grains and products. Journal of Cleaner Production 287: 125000.
  48. Verma, M., Sharma, S., Prasad, R. 2009. Biological alternatives for termite control: A review. International Biodeterioration & Biodegradation 63(8): 959-972. https://doi.org/10.1016/j.ibiod.2009.05.009
  49. Yatagai, M., Nishimoto, M., Hori, K., Ohira, T., Shibata, A. 2002. Termiticidal activity of wood vinegar, its components and their homologues. Journal of Wood Science 48: 338-342.
  50. Yoon, J., Kim, T.J. 2021. Synergistic antifungal activity of Magnoliae Cortex and Syzyii Flos against Candida albicans. Journal of the Korean Wood Science and Technology 49(2): 142-153. https://doi.org/10.5658/WOOD.2021.49.2.142