• Title/Summary/Keyword: LiF target

Search Result 24, Processing Time 0.033 seconds

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim;B. Davids;M. Williams;K.H. Hudson;S. Upadhyayula;M. Alcorta;P. Machule;N.E. Esker;C.J. Griffin;J. Williams;D. Yates;A. Lennarz;C. Angus;G. Hackman;D.G. Kim;J. Son;J. Park;K. Pak;Y.K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.919-926
    • /
    • 2023
  • To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

Feasibility of Shrinking Field Radiation Therapy through 18F-FDG PET/CT after 40 Gy for Stage III Non-Small Cell Lung Cancers

  • Ding, Xiu-Ping;Zhang, Jian;Li, Bao-Sheng;Li, Hong-Sheng;Wang, Zhong-Tang;Yi, Yan;Sun, Hong-Fu;Wang, Dong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.319-323
    • /
    • 2012
  • Objective: To explore the feasibility of shrinking field technique after 40 Gy radiation through 18F-FDG PET/CT during treatment for patients with stage III non-small cell lung cancer (NSCLC). Methods: In 66 consecutive patients with local-advanced NSCLC, 18F-FDG PET/CT scanning was performed prior to treatment and repeated after 40 Gy. Conventionally fractionated IMRT or CRT plans to a median total dose of 66Gy (range, 60-78Gy) were generated. The target volumes were delineated in composite images of CT and PET. Plan 1 was designed for 40 Gy to the initial planning target volume (PTV) with a subsequent 20-28 Gy-boost to the shrunken PTV. Plan 2 was delivering the same dose to the initial PTV without shrinking field. Accumulated doses of normal tissues were calculated using deformable image registration during the treatment course. Results: The median GTV and PTV reduction were 35% and 30% after 40 Gy treatment. Target volume reduction was correlated with chemotherapy and sex. In plan 2, delivering the same dose to the initial PTV could have only been achieved in 10 (15.2%) patients. Significant differences (p<0.05) were observed regarding doses to the lung, spinal cord, esophagus and heart. Conclusions: Radiotherapy adaptive to tumor shrinkage determined by repeated 18F-FDG PET/CT after 40 Gy during treatment course might be feasible to spare more normal tissues, and has the potential to allow dose escalation and increased local control.

LINC00174 Facilitates Proliferation and Migration of Colorectal Cancer Cells via MiR-3127-5p/ E2F7 Axis

  • Ma, Yuhong;Li, Yuzhen;Tang, Yuanyuan;Tang, Ning;Wang, Dengke;Li, Xiaofei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1098-1108
    • /
    • 2021
  • The literature indicates that LINC00174 promotes the growth of colorectal cancer (CRC) cells, but its research needs to be enriched. We tried to explore the function and mechanism of LINC00174 in CRC cell proliferation and migration. Bioinformatics analysis predicted the binding relationship and expressions of lncRNA, miRNA and mRNA. Clinical study analyzes the relationship between LINC00174 and clinical data characteristics of CRC patients. The expressions of LINC00174, miR-3127-5p and E2F7 were verified by RT-qPCR, and the combination of the two was verified by dual luciferase analysis and RNA immunoprecipitation as needed. Western blot was used to detect the expression of EMT-related protein and E2F7 protein. Functional experiments were used to evaluate the function of the target gene on CRC cells. LINC00174 was up-regulated in CRC clinical samples and cells and was related to the clinical characteristics of CRC patients. High-expression of LINC00174, contrary to the effect of siLINC00174, promoted cell viability, proliferation, migration and invasion, up-regulated the expressions of N-Cadherin, Vimentin, E2F7, and inhibited the expression of E-Cadherin. MiR-3127-5p was one of the targeted miRNAs of LINC00174 and was down-regulated in CRC samples. In addition, miR-3127-5p mimic partially reversed the malignant phenotype of CRC cells induced by LINC00174. Besides, E2F7 was a target gene of miR-3127-5p, and LINC00174 repressed miR-3127-5p to regulate E2F7. Our research reveals that LINC00174 affected the biological characteristics of CRC cells through regulated miR-3127-5p/ E2F7 axis.

Thermal dehydration tests of FLiNaK salt for thermal-hydraulic experiments

  • Shuai Che;Sheng Zhang;Adam Burak;Xiaodong Sun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1091-1099
    • /
    • 2024
  • Fluoride-salt-cooled High-temperature Reactor (FHR) is a promising nuclear reactor technology. Among many challenges presented by the molten fluoride salts is the corrosion of salt-facing structural components. Higher moisture contents, in the FLiNaK (LiF-NaF-KF, 46.5-11.5-42 mol%) salt, aggravate intergranular corrosion and pitting for the given alloys. Therefore, several thermal dehydration tests of FLiNaK salt were performed with a batch size suitable for thermal-hydraulic experiments. Thermogravimetric Analysis (TGA) was performed for the three constituent fluoride salts individually. Preliminary thermal dehydration plans were then proposed for NaF and KF salts based on the TGA curves. However, the dehydration process may not be required for LiF since its low mass loss (<1.3 wt%). To evaluate the performance of these thermal dehydration plans, a batch-scale salt dehydration test facility was designed and constructed. The preliminary thermal dehydration plans were tested by varying the heating rates, target temperature, and holding time. The sample mass loss data showed that the high temperatures (>500 ℃) were necessary to remove a significant amount of moisture (>1 wt%) from NaF salt, while relatively low temperatures (around 300 ℃) with a long holding time (>10 h) were sufficient to remove most of the moisture from KF salt.

Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering (In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Conceptional design of an adjustable moderator for BNCT based on a neutron source of 2.8 MeV proton bombarding with Li target

  • Yinan Zhu;Zuokang Lin;Haiyan Yu;Xiaohan Yu;Zhimin Dai
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1813-1821
    • /
    • 2024
  • Beam shaping assembly (BSA) is a vital component in Boron Neutron Capture Therapy (BNCT) for obtaining epithermal neutron beams. Several feasible designs of BSA for accelerator-based BNCT (AB-BNCT) neutron source are carried out based on neutrons by bombarding a natural lithium target with 10 mA, 2.8 MeV proton beams. The calculation results demonstrate that a thickness of 45 cm is appropriate for general moderators referring to the therapeutic parameter of Advanced Depth (AD). A series of optimizations are performed and two results are confirmed: One is that employing the configuration of MgF2 and FLUENTAL combined by 1:1 could improve the therapeutic rate (TR) of tumors at a depth of middle region, and the other one is that the TR of superficial tumors can be increased by adding a 5 cm thick boron-11 secondary moderator at the end of general moderators. As a result, an innovative conception of an adjustable moderator is recommended to BNCT. Compared to the MgF2 moderator with a fixed thickness of 45 cm, the TR value can be improved by a maximum of 47.7 % by using the adjustable moderator. Furthermore, the configuration of adjustable moderator has been designed with regulation method for treating tumors of different depths.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

TOLED 용 ITO 음전극 제작 특성

  • Kim Hyeon-Ung;Geum Min-Jong;Seo Hwa-Il;Kim Gwang-Seon;Kim Gyeong-Hwan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.106-109
    • /
    • 2005
  • The ITO thin films for Top-Emitting Organic Light Emitting Devices (TOLEDs) were prepared on cell(LiF/Organic Layer/Bottom Electrode : ITO ) by FTS (Facing Targets Sputtering) system under different sputtering conditions which were varying gas pressure, input current and distance of target to target($D_{T-T}$). As a function of sputtering conditions, I-V characteristics of prepared ITO thin films on cell were measured by 4156A (HP). In the results, when the In thin films were deposited at $D_{T-T}$ 70mm and working pressure 1mTorr, the leakage current of ITO/cell was about 11[V] and 5E-6[$mA/cm^2$].

  • PDF

Fabrication and characterization of $SnO_2$ anode thin film for thin film secondary battery (박막형 2차전지용 $SnO_2$음극 박막의 제작 및 특성 평가)

  • 이성준;신영화;윤영수;조원일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • In this study, Tin oxide thin film for secondary battery was deposited on Pt/Ti/Si(100). It was fabricated by r.f. reactive sputtering with Tin metal target. At constant power (130W), pressure (Base 5$\times$10$^{-6}$ Torr, working 5$\times$10$^{-3}$ Torr) and at room temperature, it was fabricated by Ar/O2 gas ratio. After deposition, we got AFM & SEM to investigated surface of thin films and had XRD to find crystalline of thin films. Charge/discharge characteristics were carried out in 1M LiPF$_{6}$ , EC:DMC = 1:1 liquid electrolyte using lithium metal at room temperature.

  • PDF

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.