• 제목/요약/키워드: Engine System Modeling

검색결과 297건 처리시간 0.026초

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

직렬형 하이브리드 추진시스템의 디젤 엔진 냉각수온 모델링 (Modeling of Engine Coolant Temperature in Diesel Engines for the Series Hybrid Powertrain System)

  • 김용래;이용규;정순규
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.53-58
    • /
    • 2016
  • Modeling of engine coolant temperature was conducted for a series hybrid powertrain system. The purpose of this modeling was a simplification of complex heat transfer process inside a engine cooling system in order to apply it to the vehicle powertrain simulation software. A basic modeling concept is based on the energy conservation equation within engine coolant circuit and are composed of heat rejection from engine to coolant, convection heat transfer from an engine surface and a radiator to ambient air. At the final stage, the coolant temperature was summarized as a simple differential equation. Unknown heat transfer coefficients and heat rejection term were defined by theoretical and experimental methods. The calculation result from this modeling showed a reasonable prediction by comparison with the experimental data.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

굴삭기 엔진/펌프 시스템의 모델링 및 제어에 관한 연구 (A Study on Modeling and Control of Excavator Engine/Pump System)

  • 곽동훈;하석홍;조겸래
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.29-41
    • /
    • 1992
  • According to the recent increase of demands for multi-function and economics on hydraulic excavator, it is required that excavator should have simple operation, higher and operational efficiency, however the modeling of engine/pump system of excavator is not prescribed by the paper. So, in this paper the modeling of engine/pump system of excavator is suggested by identification method from step response and verified effectiveness of identification system by comparing with experimental results which was conducted using PID controller. To improve the problem of parameter variation and modeling error in the system, sliding mode control was introduced and new switching surface was designed. This control algorithm was applied to a hydraulic excavator by simulation, and its effectiveness was verified, and the results of variable structure system for the excavator system using a output component was compared with that of full state feedback when load disturbances and system paramenter variation exist.

  • PDF

동적특성을 고려한 디젤엔진 흡배기 시스템의 상태추정 모델 (Air System Modeling for State Estimation of a Diesel Engine with Consideration of Dynamic Characteristics)

  • 이주원;박영섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.36-45
    • /
    • 2014
  • Model based control methods are widely used to improve the control performance of diesel engine air systems because the control results of the air system significantly affect the emission level and drivability. However, the model based control algorithm requires a lot of unmeasurable states which are hard to be measured in a mass production engine. In this study, an air system model of the diesel engine is proposed to estimate 11 unmeasurable states using only sensors equipped in a mass production engine. In order to improve the estimation performance in the transient condition, dynamic characteristics of the air system are analyzed and implemented as discrete filters. Turbine and compressor efficiency models are also proposed to overcome a limitation of the constant or look-up table based efficiency values. The proposed air system model was validated in steady state and transient conditions by real-time engine experiments. The maximum error of the estimation for 11 physical states was 11.7%.

모델 및 구성품 기반 초음속 추진기관 실시간 모델링 및 시뮬레이션 (Model and component based modeling and simulation of a supersonic propulsion system)

  • 최종호;박익수;이재윤;김중회;김익수;윤현걸;임진식;김철배;박재만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.579-583
    • /
    • 2011
  • 램제트 및 스크램제트와 같은 공기흡입식 추진기관의 구성품 기반 모델 및 추진시스템 시뮬레이션에 대해 연구하였다. 시뮬레이션 모델은 엔진제어기 및 연료공급 시스템을 포함하여 공기흡입구, 연소기, 노즐 등으로 구성된 공기흡입식 추진기관의 특성을 고려하여 각각의 구성품을 종합한 모델로 구현하였다. 엔진의 성능 및 제어기의 동작 특성을 검증하기 위해 실제 환경을 모사하여 실시간 기반 Hardware In the Loop System(HILS)을 구현하였다.

  • PDF

무인기용 터보차저 장착 SI 엔진 시스템 성능해석 (Performance Analysis of a Turbocharged SI Engine System for UAV)

  • 임병준;강영석;강승우
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.43-49
    • /
    • 2016
  • A performance analysis of a gasoline engine with a 2-stage turbocharger system for unmanned aerial vehicle(UAV) was conducted. One dimensional system analysis was conducted for the requirements of turbochargers and adequate turbochargers were selected from commercially available models for automobiles. Modeling and simulation were performed by Ricardo WAVE. Gasoline engine modeling was based on a 2.4 L 4-cylinder engine specification. The selected turbochargers and intercoolers were added to the engine model and simulated at 40,000 ft altitude condition. The results of the engine model and 2-stage turbocharger system model simulation showed break power 93 kW which is appropriate power required for the engine operation at the ambient conditions of 40,000 ft altitude.

전자식 가버너를 이용한 디젤 자동차의 헌팅억제 제어에 관한 연구 (A Study on Suppressed Hunting of Diesel Engine Truck Using Electronic Governor)

  • 홍순일;김남식
    • 동력기계공학회지
    • /
    • 제2권3호
    • /
    • pp.68-73
    • /
    • 1998
  • The propulsion diesel engine have been widely applied with a mechanical governor to control the truck speed for a long time. But it was recently very difficult for mechanical governor to control the speed of long stock and diesel engine of truck because of hunting by dead time between fuel injection and power output. This study is aimed to configure the modeling for performance simulation regarding to diesel truck operation which could be suppressed for hunting. The modeling have been made on the base of dynamic characteristic such as electronic governor, injection of fuel system and operating states of diesel engine truck. Real model system have been introduced for deciding reacting parameters and for the comparison of resulting performance in simulation. In results of simulation, we obtained items which diesel truck drives for suppressed hunting.

  • PDF

터보펌프 가압형 액체 추진제 로켓엔진의 천이성능 예측 모델 (Transient Simulator for the Turbopump Pressurized Liquid Rocket-Engine System)

  • 고태호;김상민;양희성;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.35-38
    • /
    • 2007
  • 액체로켓엔진(Liquid Rocket Engine) 의 천이성능 예측을 위해 선행연구 되었던 LRE 시스템 모듈화 프로그램의 결과를 살펴보고, 일본의 로켓엔진 동적 해석 프로그램(Rocket Engine Dynamic Simulator)의 엔진 시스템 동적 해석 방법과 모델링에 대해 고찰하였다. LRE 시스템 모듈화 프로그램에서는 각 구성품에 대한 설계 인자를 수학적으로 모델링하였고 구성품 간의 유량과 압력을 매칭시켜 통합하여, 로켓엔진 시스템의 요구조건을 만족하는 각 구성품에 대한 주요 설계 파라미터를 도출하는 과정에 관하여 논의하였다. 로켓엔진 시스템을 유한한 배관요소들의 연결로 모델링하고, 시간의 함수로 표현되는 보존방정식을 적용하여 터보펌프, 밸브, 오리피스,추력실 등 유체기기의 작동 특성을 모사하는 동특성 설계 과정에 관하여 고찰한다.

  • PDF

하이브리드 전기차량 동력부의 모델링 및 성능평가 프로그램 제작 (Modeling of Hybride Electric Vehicle Drivetrain and Development of Simulation Program)

  • 김도형;박영진
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.122-129
    • /
    • 2000
  • This paper describes a hybrid dynamic system(HDS) modeling method and result for the drivertrain of a parallel hybrid electric vehicle(PHEV) which consists of a gasoline engine, an electric machine, and a continuous variable transmission (CVT) and proposes a drivetrain control system. The control system has an engine controller, a motor controller, a CVT controller and a supervisory controller for the coordination of all system. The controller keep the speed of engine wheel and the output torque within the optimal operation range based on the experimental data. We also developed a MATLAB/SIMULINK program for the performance simulation of PHEV drivetrain model and controllers and compared the simulation result with the experiment result in the recent literatures.

  • PDF