DOI QR코드

DOI QR Code

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge

어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안

  • Jiwon Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Suk Jekal (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ha-Yeong Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Min Sang Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Dong Hyun Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chan-Gyo Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Yeon-Ryong Chu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Neunghi Lee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Chang-Min Yoon (Department of Chemical and Biological Engineering, Hanbat National University)
  • 김지원 (한밭대학교 화학생명공학과) ;
  • 제갈석 (한밭대학교 화학생명공학과) ;
  • 김하영 (한밭대학교 화학생명공학과) ;
  • 김민상 (한밭대학교 화학생명공학과) ;
  • 김동현 (한밭대학교 화학생명공학과) ;
  • 김찬교 (한밭대학교 화학생명공학과) ;
  • 추연룡 (한밭대학교 화학생명공학과) ;
  • 이능히 (한밭대학교 화학생명공학과) ;
  • 윤창민 (한밭대학교 화학생명공학과)
  • Received : 2023.02.16
  • Accepted : 2023.03.05
  • Published : 2023.03.30

Abstract

In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.

본 연구에서는 어드밴스드 패키징 공정 중에 배관과 드레인에서 발생하는 슬러지의 형성 인자 및 메커니즘을 확인하고 계면활성제를 활용한 슬러지 방지법에 대해 제안하고자 하였다. 어드밴스드 패키징 공정은 기존의 컨벤셔널 패키징 공정과 다르게 전공정(Fabrication)에서 진행되는 공정들이 동일하게 적용되기에 폐액이 발생할 수 있는공정들이 다수 존재한다. 상세히는, 캐리어 웨이퍼 본딩, 포토, 현상, 및 캐리어 웨이퍼 디본딩 공정에서 다량의 폐액들이 발생하게 된다. 어드밴스드 패키징 공정의 폐액에서 슬러지가 형성되는 주요 인자를 확인하기 위해 6종의 화학 소재들인 Bonding glue, HMDS, Photoresist, PR developer, Debonding cleaner 및 수분을 활용하여 혼합 평가를 진행하였다. 그 결과, 검은색의 고체 슬러지가 형성이 됨을 확인할 수 있었으며, 이는 HMDS의 가수화/탈수 반응을 통한 Sludge seed의 제공 및 PR과의 소수성-소수성 결합을 통해 슬러지가 성장에 의한 것으로 추정된다. 이러한, 슬러지의 형성을 방지하기 위해 3종의 계면활성제들인 CTAB, PEG 및 샴푸를 슬러지의 주요 인자들과 함께 혼합한 결과, 슬러지가 형성되지 않았음을 확인할 수 있었다. 이는, 계면활성제의 탄소꼬리들이 PR과 소수성-소수성 결합하여 HMDS 기반의 Sludge seed와의 반응 및 슬러지의 형성을 억제하기 때문이다. 따라서, 계면활성제의 드레인 투입을 통해 어드밴스드 패키징 공정 중에 발생할 수 있는 슬러지의 형성 억제를 진행하여 드레인과 배관에서의 막힘과 같은 다양한 문제들을 해결할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체 대학 - 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004)

References

  1. Sundramurhy, V. P., Nithya, T. G., Masi, C., Gomadurai, C. and Abda, E. M., "Recent advances and prospects for industrial waste management and product recovery for environmental appliances", Physical Sciences Reviews, pp. 215~234. (2021). 
  2. Meyer, T., Amin, P., Allen, D. G. and Tran, H., "Dewatering pulp and paper mill biosludge and primary sludge", Journal of Environmental Chemical Engineering, 6(5), pp. 6317~6321. (2018).  https://doi.org/10.1016/j.jece.2018.09.037
  3. Kim, D. H., Kim, J., Jekal, S., Kim, M. J., Kim, H.-Y., Kim, M. S., Kim, S.-C., Park, S.-Y. and Yoon, C.-M., "Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application", Journal of the Korea Organic resources Recycling Associaton, 30(3), pp. 5~12. (2022). 
  4. Kim, M., Lee, Y., Park, J., Ryu, C. and Ohm, T.-I., "Partial oxidation of sewage sludge briquettes in a updraft fixed bed", Waste Management, 49, pp. 204~211. (2016).  https://doi.org/10.1016/j.wasman.2016.01.040
  5. Liu, Y., Xu, H.-L., Yang, S.-F. and Tay, J.-H., "Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor", Water Research, 37(3), pp. 661~673. (2003).  https://doi.org/10.1016/S0043-1354(02)00351-2
  6. Piao, C., Kim, S. H., Lee, J. K., Choi, W. G. and Kim, Y. Y., "Non-invasive ultrasonic inspection of sludge accumulation in a pipe", Ultrasonics, 119, p. 106602. (2022). 
  7. Asaadian, H., Ahmadi, P., Khormizi, M. Z., Mohammadi, S., Soulgani, B. S., Baghersaei, S. and Mokhtari, B., "Prevention of acid-induced sludge formation using an environmentally-friendly bio-based nonionic surfactant", Journal of Petroleum Science and Engineering, 218, p. 111009. (2022). 
  8. Khwairakpam, M. and Bhargava, R., "Vermitechnology for sewage sludge recycling", Journal of Hazardous Materials, 161(2-3), pp. 948~954. (2009).  https://doi.org/10.1016/j.jhazmat.2008.04.088
  9. Lee, T.-C. and Liu, F.-J., "Recovery of hazardous semiconductor-industry sludge as a useful resource", Journal of Hazardous Materials, 165(1-3), pp. 359~365. (2009).  https://doi.org/10.1016/j.jhazmat.2008.10.105
  10. Ryabtsev, S. V., Shaposhnick, A. V., Lukin, A. N. and Domashevskaya, E. P., "Application of semiconductor gas sensors for medical diagnostics", Sensors and Actuators, B: Chemical, 59(1), pp. 26~29. (1999).  https://doi.org/10.1016/S0925-4005(99)00162-8
  11. Kim, S., Yoon, C., Ham, S., Park, J., Kwon, O., Park, D., Choi, S., Kim, S., Ha, K. and Kim, W., "Chemical use in the semiconductor manufacturing industry", International Journal of Occupational and Environmental Health, 24(3-4), pp. 109~118. (2018).  https://doi.org/10.1080/10773525.2018.1519957
  12. Cho, M. H. and Kim, G., "A Study on the Semiconductor Package Process Epoxy Moulding Compound Gun", The institute of Electronics and Information Engineers, 43(4), pp. 83~92. (2006). 
  13. Yuan, C., Ie, L.-R., Chen, W.-C. and Yuan, C.-S., "Synthesis and physicochemical properties of β-silicon carbide prepared with reproduced carbon black and semiconductor packing waste by integrated mechanical and thermal activation (IMTA) process", Journal of Environmental Chemical Engineering, 10, p. 108404. (2022). 
  14. Lee, M. K., Jeoung, J. W., Ock, J. Y. and Choa, S.-H., "Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package", Journal of the Microelectronics & Packaging Society, 21(1), pp. 31~39. (2014). 
  15. Esashi, M., "Wafer level packaging of MEMS", Journal of Micromechanics and Microengineering, 18(7), p. 073001. (2008). 
  16. Thadesar, P. A. and Bakir, M. S., "Novel photo-defined polymer-enhanced through-silicon vias for silicon interposers", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(7), pp. 1130~1137. (2013).  https://doi.org/10.1109/TCPMT.2013.2261122
  17. Park, S.-H., Shin, J.-A. and Park, H.-D., "Exposure Possibility to By-products during the Processes of Semiconductor Manufacture", Journal of Korean Society of Occupational and Environmental Hygiene, 22(1), pp. 52~59. 
  18. Rahman, I. A. and Padavettan, V., "Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites - a review", Journal of Nanomaterials, 2012(8), p. 132424. 
  19. De Luna, M. D. G., Warmadewanthi and Liu, J. C., "Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3), pp. 64~68. (2009).  https://doi.org/10.1016/j.colsurfa.2008.12.006
  20. Verma, C., Quraishi, M. A. and Rhee, K. Y., "Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection", Advances in Colloid and Interface Science, 306, p. 102723. (2022). 
  21. Scheibel, J. J., "The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry", Journal of surfactants and detergents, 7(4), pp. 319~328. (2004).  https://doi.org/10.1007/s11743-004-0317-7
  22. Roger, K., Cabane, B. and Olsson, U., "Emulsification through surfactant hydration: the PIC process revisited", Langmuir, 27(2), pp. 604~611. (2011).  https://doi.org/10.1021/la1042603
  23. Kovalchuk, N. M. and Simmons, M. J., "Surfactantmediated wetting and spreading: Recent advances and applications", Current Opinion in Colloid & Interface Science, 51, p. 101375. (2021). 
  24. Karthick, A., Roy, B. and Chattopadhyay, P., "A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil", Journal of environmental management, 243, pp. 187~205. (2019).  https://doi.org/10.1016/j.jenvman.2019.04.092
  25. Chen, S., Hanning, S., Falconer, J., Locke, M. and Wen, J., "Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications", European journal of pharmaceutics and biopharmaceutics, 144, pp. 18~39. (2019).  https://doi.org/10.1016/j.ejpb.2019.08.015
  26. Miller, D. J., Henning, T. and Grunbein, W., "Phase inversion of W/O emulsions by adding hydrophilic surfactant-a technique for making cosmetics products", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183, pp. 681~688. (2001).  https://doi.org/10.1016/S0927-7757(01)00494-0
  27. Azarmi, R. and Ashjaran, A., "Type and application of some common surfactants", Journal of Chemical and Pharmaceutical Research, 7, pp. 632~640. (2015). 
  28. Hu, C. Y., Lo, S. L., Li, C. M. and Kuan, W. H., "Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant", Journal of hazardous materials, 120, pp. 15~20. (2005).  https://doi.org/10.1016/j.jhazmat.2004.12.038
  29. Yim, G. Y., "Surface Active Agent and Environmental Safety", Journal of the Korean professional engineers association, 24(5), pp. 15~25. (1991). 
  30. Yoshino, H., Tokumura, M. and Kawase, Y., "Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron", Journal of Environmental Science and Health, 49(9), pp. 998~1006. (2014).  https://doi.org/10.1080/10934529.2014.894841
  31. Zoschke, K., Wolf, J., Lopper, C., Kuna, I., Jurgensen, N., Glaw, V., Samulewicz, K., Roder, J., Wilke, M., Wunsch, O., Klein, M., Suchodoletz, M. V., Oppermann, H., Braun, T., Wieland, R. and Ehrmann, O., "TSV based Silicon Interposer Technology for Wafer Level Fabrication of 3D SiP Modules", Electronic Components and Technology Conference, 5898608, pp. 836~843. (2011). 
  32. Lin, S. H. and Kiang, C. D., "Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant", Journal of Hazardous Materials, 97(1-3), pp. 159~171. (2003).  https://doi.org/10.1016/S0304-3894(02)00257-1
  33. Gonzalez-Luna, R., Rodrigo, M. T., Jimenez, C. and Martinez-Duart, J. M., "Deposition of silicon oxinitride films from hexamethyldisilizane (HMDS) by PECVD", Thin Solid Films, 317(1-2), pp. 347~350. (1998).  https://doi.org/10.1016/S0040-6090(97)00650-0
  34. Lei, Y., Chen, Z. and Li, G., "Palladium/phosphorusfunctionalized porous organic polymer with tunable surface wettability for water-mediated Suzuki-Miyaura coupling reaction", RSC Advances, 9(63), pp. 36600~36607. (2019).  https://doi.org/10.1039/C9RA06680B
  35. Asadpour, R., Sapari, N. B., Isa, M. H., Kakooei, S. and Orji, K. U., "Acetylation of corn silk and its application for oil sorption", Fibers and Polymers, 16(9), pp. 1830~1835. (2015).  https://doi.org/10.1007/s12221-015-4745-8
  36. San-Blas, E., Cubillan, N., Guerra, M., Portillo, E. and Esteves, I., "Characterization of Xenorhabdus and Photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR)", Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 93, pp. 58~62. 
  37. Zhang, J., Zhang, N., Liu, Q., Ren, H., Li, P. and Yang, K., "Investigation of Hybrid Materials Based on Polyurethane Modified with Aliphatic Side Chains Combined with Nano-TiO2", Australian Journal of Chemistry, 71(1), pp. 47~57. (2018).  https://doi.org/10.1071/CH17202
  38. Collier, W. E., Schultz, T. P. and Kalasinsky, V. F., "Infrared Study of Lignin: Reexamination of Aryl-Alkyl Ether C-O Stretching Peak Assignments", Holzforschung, 46(6), pp. 523~528. (1992).  https://doi.org/10.1515/hfsg.1992.46.6.523
  39. Kim, J.-Y., Kim, K.-H., Yoon, S.-B., Kim, H.-K., Park, S.-H. and Kim, K.-B., "In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications", Nanoscale, 5(15), pp. 6804~6811. (2013).  https://doi.org/10.1039/c3nr01233f
  40. Ismail, N., Nazri, N. K., Abdullah, A. A., Wan Nik, W. M. N. and Wright, L. J., "Dataset in characterization of the polymer produced using different method of synthesis polychloromethylstyrene (PCMS) with clay and without clay", Data in Brief, 34, p. 106738. (2021). 
  41. Sibiya, P. N., Xaba, T. and Moloto, M. J., "Green synthetic approach for starch capped silver nanoparticles and their antibacterial activity", Pure and Applied Chemistry, 88(12), pp. 61~69. (2016). https://doi.org/10.1515/pac-2015-0704
  42. Fu, H., Li, Z. L., Zhao, Y. F. and Tu, G. Z., "Oligomerization of N, O-Bis (Trimethylsilyl)-α-amino acids into peptides mediated by o-phenylene phosphorochloridate", Journal of the American Chemical Society, 121(2), pp. 291~295. (1999).  https://doi.org/10.1021/ja980662c
  43. Zhang, X., Liu, Y., Li, Y., Wei, Z., Duan, W. and Chen, F., "Enhancing effects of sludge biochar on aerobic granular sludge for wastewater treatment", Processes, 10(11), p. 2385. (2022). 
  44. Isomaa, B., Reuter, J. and Djupsund, B. M., "The Subacute and Chronic Toxicity of Cetyltrimethylammonium Bromide (CTAB), a Cationic Surfactant, in the Rat", Archives of Toxicology, 35(2), pp. 91~96. (1976).  https://doi.org/10.1007/BF00372762
  45. Nogueira, C. C., Padilha, C. E. A., Souza Filho, P. F. and Dos Santos, E. S., "Effects of the Addition of Poly(ethylene Glycol) and Non-ionic Surfactants on Pretreatment, Enzymatic Hydrolysis, and Ethanol Fermentation", Bioenergy Research, 15(2), pp. 889~904. (2022).  https://doi.org/10.1007/s12155-021-10388-9
  46. Nokhodchi, A., Shokri, J., Dashbolaghi, A., Hassan-Zadeh, D., Ghafourian, T. and Barzegar-Jalali, M., "The enhancement effect of surfactants on the penetration of lorazepam through rat skin", International Journal of Pharmaceutics, 250(2), pp. 359~369. (2012). https://doi.org/10.1016/S0378-5173(02)00554-9