DOI QR코드

DOI QR Code

Antioxidant and anticariogenic activities of enzymatic hydrolysate from spent coffee grounds

커피박 효소분해물의 항산화 및 항충치균 활성

  • Man-Jin In (Department of Chemical and Biological Engineering, Chungwoon University) ;
  • Yu Min Jang (Department of Chemical and Biological Engineering, Chungwoon University) ;
  • Min Young Jo (Department of Chemical and Biological Engineering, Chungwoon University) ;
  • Hee Jeong Kim (Department of Chemical and Biological Engineering, Chungwoon University) ;
  • Dong Chung Kim (Department of Chemical and Biological Engineering, Chungwoon University)
  • Received : 2023.10.25
  • Accepted : 2023.11.15
  • Published : 2023.12.31

Abstract

After treating spent coffee grounds with alkali, extracts were prepared by using Viscozyme and Alcalase, respectively. Treatment of spent coffee grounds with alkali and enzymes increased the content of phenolic compounds in the extracts, thus possessing the good scavenging activities on free and cation radicals. In particular, the extract obtained by continuous treatment with alkali and Alcalase on spent coffee grounds had the best content of phenolic compounds and antioxidant activity, and inhibited the growth of Streptococcus mutans in proportion to the concentration. In conclusion, the Alcalase-enzymatic hydrolysate of alkali-treated spent coffee grounds showed excellent antioxidant and anticariogenic effects.

커피박을 알카리 처리한 후 Viscozyme과 Alcalase로 효소분해하여 추출물을 얻었다. 커피박을 알카리와 효소로 처리하였을때 추출물의 페놀성 화합물 함량이 증가하였고, 이에 따라 양이온라디칼과 유리라디칼에 대한 우수한 소거 활성을 나타내었다. 특히 커피박에 알카리와 Alcalase를 병행 처리하였을 때 페놀성 화합물 함량과 항산화 활성이 가장 높게 나타났고, 농도에 비례하여 Streptococcus mutans 균의 생육을 억제하였다. 결론적으로 알카리 처리된 커피박의 Alcalse 효소분해물은 우수한 항산화 및 항충치균 효과를 나타내었다.

Keywords

Acknowledgement

본 연구는 2023학년도 청운대학교 학술연구조성비 지원에 의해 수행된 것입니다.

References

  1. Johnson K, Liu Y, Lu M (2022) A review of recent advances in spent coffee grounds upcycle technologies and practices. Front Chem Eng 4: 838605. doi: 10.3389/fceng.2022.838605
  2. Munchow M, Alstrup J, Steen I, Giacalone D (2020) Roasting conditions and coffee flavor: a multi-study empirical investigation. Beverages 6: 29. doi: 10.3390/beverages6020029
  3. Minamisawa M, Yoshida S, Takai N (2004) Determination of biologically active substances in roasted coffee using a diode-array HPLC system. Anal Sci 20: 325‒328. doi: 10.2116/analsci.20.325
  4. Hall S, Desbrow B, Anoopkumar-Dukie S, Davey AK, Arora D, McDermott C, Schubert MM, Perkins AV, Kiefel MJ, Grant GD (2009) A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res Int 76: 626‒636. doi: 10.1016/j.foodres.2015.07.027
  5. Jo SJ, In MJ, Kim DC (2016) Effect of the roasting intensity and extraction time of coffee bean on the antioxidant activity of coffee extract. Food Eng Prog 20: 165‒169. doi: 10.13050/foodengprog. 2016.20.2.165
  6. del Castillo MD, Ames JM, Gordon MH (2002) Effect of roasting on the antioxidant activity of coffee brews. J Agric Food Chem 50: 3698‒3703. doi: 10.1021/jf011702q
  7. Almeida AAP, Farah A, Silva DAM, Nunan EA, Gloria MBA (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J Agric Food Chem 54: 8738‒8743. doi: 10.1021/jf0617317
  8. Rufian-Henares JA, Morales FJ (2007) Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J Agric Food Chem 55: 1480‒1485. doi: 10.1021/jf062604d
  9. Tenore GC, Daglia M, Orlando V, D'Urso E, Saadat SH, Novellino E, Nabavi SF, Nabavi SM (2015) Coffee and depression: a short review of literature. Curr Pharm Des 21:5034‒5040. doi: 10.2174/1381612821666150825145112
  10. Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7: 3493-3503. doi: 10.1007/s11947-014-1349-z
  11. Bottani E, Tebaldi L, Volpi A (2019) The role of ICT in supporting spent coffee grounds collection and valorization: a quantitative assessment. Sustainability 11: 6572. doi: 10.3390/SU11236572
  12. Muzaifa M, Rahmi F, Syarifudin (2021) Utilization of coffee by-products as profitable foods - a mini review. IOP Conf Ser: Earth Environ Sci 672: 012077. doi: 10.1088/1755-1315/672/1/012077
  13. Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92: 763-768. doi: 10.1016/j.apenergy.2011.08.020
  14. Jin LS, Salimi MN, Kamal SZ (2020) Optimization of pretreatment and enzymatic hydrolysis of spent coffee ground for the production of fermentable sugar. IOP Conf Ser: Mater Sci Eng 743: 012030. doi: 10.1088/1757-899X/743/1/012030
  15. Yen WJ, Wang BS, Chang LW, Duh PD (2005) Antioxidant properties of roasted coffee residues. J Agric Food Chem 53: 2658-2663. doi: 10.1021/jf0402429
  16. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243. doi: 10.1016/S0021-9258(18)88697-5
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. doi: 10.1016/s0891-5849(98)00315-3
  18. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. doi: 10.1038/1811199a0
  19. Shin YS, Lee TJ, In MJ, Kim DC (2021) Preparation of enzymatic hydrolysate from defatted perilla seed residue and its application to Leuconostoc mesenteroides cultivation. J Appl Biol Chem 64: 97-102. doi: 10.3839/jabc.2021.015
  20. Kim DC, Lee TJ, In MJ (2019) Potential of proteolytic enzyme treatment for production of Korean red ginseng extract. J Appl Biol Chem 62: 385-389. doi: 10.3839/jabc.2019.053
  21. Kim YC, Cho CW, Rhee YK, Yoo KM, Rho J (2007) Antioxidant activity of ginseng extracts prepared by enzyme and heat treatment. J Korean Soc Food Sci Nutr 36: 1482-1485
  22. Landbo AK, Meyer AS (2001) Enzyme-assisted extraction of antioxidative phenol from black currant juice press residues (Ribes nigrum). J Agric Food Chem 49: 3169-3177. doi: 10.1021/jf001443p
  23. Lee PH, Park SY, Jang TH, Yim SH, Nam SH, In MJ, Kim DC, Chae HJ (2014) Effects of complex carbohydrase treatment on physiological activities of pear peel and core. J Korean Soc Food Sci Nutr 43: 404-410. doi: 10.3746/jkfn.2014.43.3.404
  24. Son JY, Jang SH (2013) Physiological activities of enzyme hydrolysates in ethanol extracts from sesame, black sesame and perilla cake. Korean J Food Cookery Sci 29: 407-416. doi: 10.9724/kfcs.2013.29.4.407
  25. Jeong GH, Jeong YH, Nam JH, Kim TH (2020) Characterization of antioxidant constituents from perilla cake. J Korean Soc Food Sci Nutr 49: 900-906. doi: 10.3746/jkfn.2020.49.8.900
  26. Zhang YB, Bae MJ, An BJ, Choi HJ, Bae JH, Kim S, Choi C (2003) Effect of antioxidant activity and change in quality of chemical composition and polyphenol compound during long-term storage. Korean J Food Sci Technol 35: 115-120
  27. Yoon HS, Jee YJ (2015) Inhibitory effects of coffee beans on dental caries causing Streptococcus mutans activity. Int J Clin Prev Dent 11: 159-164. doi: 10.15236/ijcpd.2015.11.3.159
  28. Barroso H, Ramalhete R, Domingues A, Maci S (2018) Inhibitory activity of a green and black tea blend on Streptococcus mutans. J Oral Microbiol 10: 1481322. doi: 10.1080/20002297.2018.1481322
  29. Kim SJ, Park IB, Kang SG, Chung DO, Jung ST (2005) Anticariogenic activity and glucosyltransferase inhibition of phenolic compounds. Korean J Food Culture 20: 603-607
  30. Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31: 435-445. doi: 10.1016/j.mam.2010.09.006
  31. Manso T, Lores M, de Miguel T (2022) Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics 11: 46. doi: 10.3390/antibiotics11010046
  32. Hwang MK, Lee YH, Kim DC (2021) Antimicrobial activity of Caesalpinia sappan L. extract against skin flora. J Appl Biol Chem 64: 83-87. doi: 10.3839/jabc.2021.013