DOI QR코드

DOI QR Code

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian, Sun (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Jinjin, Pan (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Qinlong, Liu (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Jizhong, Cheng (Section of Nephrology, Department of Medicine, Baylor College of Medicine) ;
  • Qing, Tang (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Yuke, Ji (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Ke, Cheng (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Rui, wang (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Liang, Liu (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Dingyou, Wang (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Na, Wu (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Xu, Zheng (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Junxia, Li (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Xueyan, Zhang (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Zhilong, Zhu (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Yanchun, Ding (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Feng, Zheng (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University) ;
  • Jia, Li (The First Affiliated Hospital, Dalian Medical University) ;
  • Ying, Zhang (Sixth Department of Liver Disease, Dalian Public Health Clinical Center) ;
  • Yuhui, Yuan (The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University)
  • Received : 2022.04.22
  • Accepted : 2022.08.11
  • Published : 2023.01.01

Abstract

Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.

Keywords

Acknowledgement

This work was funded by Dengfeng Clinical Medicine Grant Support (No. 2021024) and the National Natural Science Foundation of China (No. 81770617). We thank Dr. Feng Zheng for providing the human kidney proximal tubular epithelial cell HK-2 and rat kidney proximal tubular epithelial cell NRK-52E.

References

  1. Anger, E. E., Yu, F. and Li, J. (2020) Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches. Int. J. Mol. Sci. 21, 1157. https://doi.org/10.3390/ijms21031157
  2. Balachandran, P., Wei, F., Lin, R. C., Khan, I. A. and Pasco, D. S. (2005) Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int. 67, 1797-1805. https://doi.org/10.1111/j.1523-1755.2005.00277.x
  3. Brooks, C., Wei, Q., Cho, S. G. and Dong, Z. (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285. https://doi.org/10.1172/JCI37829
  4. Cardinali, D. P., Esquifino, A. I., Srinivasan, V. and Pandi-Perumal, S. R. (2008) Melatonin and the immune system in aging. Neuroimmunomodulation 15, 272-278. https://doi.org/10.1159/000156470
  5. Chang, H. R., Lian, J. D., Lo, C. W., Huang, H. P. and Wang, C. J. (2007) Aristolochic acid-induced cell cycle G1 arrest in human urothelium SV-HUC-1 cells. Food Chem. Toxicol. 45, 396-402. https://doi.org/10.1016/j.fct.2006.08.020
  6. Chen, C. H., Dickman, K. G., Moriya, M., Zavadil, J., Sidorenko, V. S., Edwards, K. L., Gnatenko, D. V., Wu, L., Turesky, R. J., Wu, X. R., Pu, Y. S. and Grollman, A. P. (2012) Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl. Acad. Sci. U.S.A. 109, 8241-8246. https://doi.org/10.1073/pnas.1119920109
  7. Chevalier, R. L. (2016) The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Renal Physiol. 311, F145-F161. https://doi.org/10.1152/ajprenal.00164.2016
  8. Cosyns, J. P., Jadoul, M., Squifflet, J. P., Wese, F. X. and van Ypersele de Strihou, C. (1999) Urothelial lesions in Chinese-herb nephropathy. Am. J. Kidney Dis. 33, 1011-1017. https://doi.org/10.1016/S0272-6386(99)70136-8
  9. Dai, H., Deng, Y., Zhang, J., Han, H., Zhao, M., Li, Y., Zhang, C., Tian, J., Bing, G. and Zhao, L. (2015) PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 334, 72-80. https://doi.org/10.1016/j.tox.2015.06.003
  10. Debelle, F. D., Vanherweghem, J. L. and Nortier, J. L. (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 74, 158-169. https://doi.org/10.1038/ki.2008.129
  11. El-Sokkary, G. H., Omar, H. M., Hassanein, A. F., Cuzzocrea, S. and Reiter, R. J. (2002) Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni. Free Radic. Biol. Med. 32, 319-332.
  12. Fu, Y., Tang, C., Cai, J., Chen, G., Zhang, D. and Dong, Z. (2018) Rodent models of AKI-CKD transition. Am. J. Physiol. Renal Physiol. 315, F1098-F1106. https://doi.org/10.1152/ajprenal.00199.2018
  13. Ganguly, K., Sharma, A. V., Reiter, R. J. and Swarnakar, S. (2010) Melatonin promotes angiogenesis during protection and healing of indomethacin-induced gastric ulcer: role of matrix metaloproteinase-2. J. Pineal Res. 49, 130-140. https://doi.org/10.1111/j.1600-079X.2010.00776.x
  14. Hall, A. M. and Schuh, C. D. (2016) Mitochondria as therapeutic targets in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 25, 355-362. https://doi.org/10.1097/MNH.0000000000000228
  15. Han, Y. S., Kim, S. M., Lee, J. H., Jung, S. K., Noh, H. and Lee, S. H. (2019) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrP(C)-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535. https://doi.org/10.1111/jpi.12535
  16. Hardeland, R. (2012) Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. ScientificWorldJournal 2012, 640389.
  17. Higgins, G. C. and Coughlan, M. T. (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917-1942. https://doi.org/10.1111/bph.12503
  18. Hsin, Y. H., Cheng, C. H., Tzen, J. T., Wu, M. J., Shu, K. H. and Chen, H. C. (2006) Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells. Apoptosis 11, 2167-2177. https://doi.org/10.1007/s10495-006-0289-0
  19. Huo, X., Wang, C., Yu, Z., Peng, Y., Wang, S., Feng, S., Zhang, S., Tian, X., Sun, C., Liu, K., Deng, S. and Ma, X. (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J. Pineal Res. 62, e12390. https://doi.org/10.1111/jpi.12390
  20. Ishimoto, Y. and Inagi, R. (2016) Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069. https://doi.org/10.1093/ndt/gfv317
  21. Jin, H., Wang, Y., Zhou, L., Liu, L., Zhang, P., Deng, W. and Yuan, Y. (2014) Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J. Pineal Res. 57, 442-450. https://doi.org/10.1111/jpi.12184
  22. Jones, J., Holmen, J., De Graauw, J., Jovanovich, A., Thornton, S. and Chonchol, M. (2012) Association of complete recovery from acute kidney injury with incident CKD stage 3 and all-cause mortality. Am. J. Kidney Dis. 60, 402-408. https://doi.org/10.1053/j.ajkd.2012.03.014
  23. Kim, J. Y., Leem, J. and Jeon, E. J. (2019) Protective effects of melatonin against aristolochic acid-induced nephropathy in mice. Biomolecules 10, 11. https://doi.org/10.3390/biom10010011
  24. Ko, S. F., Chen, Y. L., Sung, P. H., Chiang, J. Y., Chu, Y. C., Huang, C. C., Huang, C. R. and Yip, H. K. (2020) Hepatic (31) P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J. Cell. Mol. Med. 24, 10088-10099. https://doi.org/10.1111/jcmm.15617
  25. Li, Y., Liu, Z., Guo, X., Shu, J., Chen, Z. and Li, L. (2006) Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Arch. Toxicol. 80, 524-532. https://doi.org/10.1007/s00204-006-0090-4
  26. Luciano, R. L. and Perazella, M. A. (2015) Aristolochic acid nephropathy: epidemiology, clinical presentation, and treatment. Drug Saf. 38, 55-64. https://doi.org/10.1007/s40264-014-0244-x
  27. Pozdzik, A. A., Salmon, I. J., Debelle, F. D., Decaestecker, C., Van den Branden, C., Verbeelen, D., Deschodt-Lanckman, M. M., Vanherweghem, J. L. and Nortier, J. L. (2008) Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int. 73, 595-607. https://doi.org/10.1038/sj.ki.5002714
  28. Priestap, H. A., Torres, M. C., Rieger, R. A., Dickman, K. G., Freshwater, T., Taft, D. R., Barbieri, M. A., and Iden, C. R. (2012) Aristolochic acid I metabolism in the isolated perfused rat kidney. Chem. Res. Toxicol. 25, 130-139. https://doi.org/10.1021/tx200333g
  29. Qi, X., Cai, Y., Gong, L., Liu, L., Chen, F., Xiao, Y., Wu, X., Li, Y., Xue, X. and Ren, J. (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol. Appl. Pharmacol. 222, 105-110. https://doi.org/10.1016/j.taap.2007.03.029
  30. Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A. and Xu, B. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell. Mol. Life Sci. 74, 3863-3881. https://doi.org/10.1007/s00018-017-2609-7
  31. Romanov, V., Whyard, T. C., Waltzer, W. C., Grollman, A. P. and Rosenquist, T. (2015) Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch. Toxicol. 89, 47-56. https://doi.org/10.1007/s00204-014-1249-z
  32. Simoes, M. L., Hockley, S. L., Schwerdtle, T., Gamboa da Costa, G., Schmeiser, H. H., Phillips, D. H. and Arlt, V. M. (2008) Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53. Toxicol. Appl. Pharmacol. 232, 86-98. https://doi.org/10.1016/j.taap.2008.06.006
  33. Singh, M. and Jadhav, H. R. (2014) Melatonin: functions and ligands. Drug Discov. Today 19, 1410-1418. https://doi.org/10.1016/j.drudis.2014.04.014
  34. Suzuki, T., Yamaguchi, H., Kikusato, M., Hashizume, O., Nagatoishi, S., Matsuo, A., Sato, T., Kudo, T., Matsuhashi, T., Murayama, K., Ohba, Y., Watanabe, S., Kanno, S., Minaki, D., Saigusa, D., Shinbo, H., Mori, N., Yuri, A., Yokoro, M., Mishima, E., Shima, H., Akiyama, Y., Takeuchi, Y., Kikuchi, K., Toyohara, T., Suzuki, C., Ichimura, T., Anzai, J., Kohzuki, M., Mano, N., Kure, S., Yanagisawa, T., Tomioka, Y., Toyomizu, M., Tsumoto, K., Nakada, K., Bonventre, J. V., Ito, S., Osaka, H., Hayashi, K. and Abe, T. (2016) Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage. J. Am. Soc. Nephrol. 27, 1925-1932. https://doi.org/10.1681/ASN.2015060623
  35. Sweetwyne, M. T., Pippin, J. W., Eng, D. G., Hudkins, K. L., Chiao, Y. A., Campbell, M. D., Marcinek, D. J., Alpers, C. E., Szeto, H. H., Rabinovitch, P. S. and Shankland, S. J. (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 91, 1126-1145. https://doi.org/10.1016/j.kint.2016.10.036
  36. Szeto, H. H., Liu, S., Soong, Y., Seshan, S. V., Cohen-Gould, L., Manichev, V., Feldman, L. C. and Gustafsson, T. (2017) Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 28, 1437-1449. https://doi.org/10.1681/ASN.2016070761
  37. Tamarindo, G. H., Ribeiro, D. L., Gobbo, M. G., Guerra, L. H. A., Rahal, P., Taboga, S. R., Gadelha, F. R. and Goes, R. M. (2019) Melatonin and docosahexaenoic acid decrease proliferation of PNT1A prostate benign cells via modulation of mitochondrial bioenergetics and ROS production. Oxid. Med. Cell. Longev. 2019, 5080798.
  38. Tan, D. X. and Hardeland, R. (2021) The reserve/maximum capacity of melatonin's synthetic function for the potential dimorphism of melatonin production and its biological significance in mammals. Molecules 26, 7302. https://doi.org/10.3390/molecules26237302
  39. Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., Mayo, J. C., Fuentes-Broto, L. and Reiter, R. J. (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 85, 607-623. https://doi.org/10.1111/j.1469-185X.2009.00118.x
  40. Tan, D. X., Manchester, L. C., Qin, L. and Reiter, R. J. (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 17, 2124. https://doi.org/10.3390/ijms17122124
  41. Tang, C., Han, H., Yan, M., Zhu, S., Liu, J., Liu, Z., He, L., Tan, J., Liu, Y., Liu, H., Sun, L., Duan, S., Peng, Y., Liu, F., Yin, X. M., Zhang, Z. and Dong, Z. (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14, 880-897. https://doi.org/10.1080/15548627.2017.1405880
  42. Tang, C., He, L., Liu, J. and Dong, Z. (2015) Mitophagy: basic mechanism and potential role in kidney diseases. Kidney Dis. (Basel) 1, 71-79. https://doi.org/10.1159/000381510
  43. Thangam, R., Senthilkumar, D., Suresh, V., Sathuvan, M., Sivasubramanian, S., Pazhanichamy, K., Gorlagunta, P. K., Kannan, S., Gunasekaran, P., Rengasamy, R. and Sivaraman, J. (2014) Induction of ROS-dependent mitochondria-mediated intrinsic apoptosis in MDA-MB-231 cells by glycoprotein from Codium decorticatum. J. Agric. Food Chem. 62, 3410-3421. https://doi.org/10.1021/jf405329e
  44. Wang, K., Feng, C., Li, C., Yao, J., Xie, X., Gong, L., Luan, Y., Xing, G., Zhu, X., Qi, X. and Ren, J. (2015) Baicalin protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A through the aromatic hydrocarbon receptor. Int. J. Mol. Sci. 16, 16454-16468. https://doi.org/10.3390/ijms160716454
  45. Wang, L., Liu, N., Xue, X. and Zhou, S. (2019) The effect of overexpression of the enhancer of zeste homolog 1 (EZH1) gene on aristolochic acid-induced injury in HK-2 human kidney proximal tubule cells in vitro. Med. Sci. Monit. 25, 801-810. https://doi.org/10.12659/MSM.911611
  46. Wang, R., Pan, J., Han, J., Gong, M., Liu, L., Zhang, Y., Liu, Y., Wang, D., Tang, Q., Wu, N., Wang, L., Yan, J., Li, H. and Yuan, Y. (2022) Melatonin attenuates dasatinib-aggravated hypoxic pulmonary hypertension via inhibiting pulmonary vascular remodeling. Front. Cardiovasc. Med. 9, 790921. https://doi.org/10.3389/fcvm.2022.790921
  47. Wang, T., Liu, B., Guan, Y., Gong, M., Zhang, W., Pan, J., Liu, Y., Liang, R., Yuan, Y. and Ye, L. (2018) Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac. Cancer 9, 368-375. https://doi.org/10.1111/1759-7714.12587
  48. Wang, X., Xue, N., Zhao, S., Shi, Y., Ding, X. and Fang, Y. (2020) Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 11, 620. https://doi.org/10.1038/s41419-020-02876-1
  49. Yang, C. C., Wu, C. T., Chen, L. P., Hung, K. Y., Liu, S. H. and Chiang, C. K. (2013) Autophagy induction promotes aristolochic acidI-induced renal injury in vivo and in vitro. Toxicology 312, 63-73. https://doi.org/10.1016/j.tox.2013.07.017
  50. Yu, Z., Tian, X., Peng, Y., Sun, Z., Wang, C., Tang, N., Li, B., Jian, Y., Wang, W., Huo, X. and Ma, X. (2018) Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J. Pineal Res. 65, e12478. https://doi.org/10.1111/jpi.12478
  51. Zhang, Y., ShiYang, X., Zhang, Y., Li, Y., Shi, X. and Xiong, B. (2019) Exposure to aristolochic acid I compromises the maturational competency of porcine oocytes via oxidative stress-induced DNA damage. Aging 11, 2241-2252. https://doi.org/10.18632/aging.101911
  52. Zhou, L., Fu, P., Huang, X. R., Liu, F., Lai, K. N. and Lan, H. Y. (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J. Am. Soc. Nephrol. 21, 31-41. https://doi.org/10.1681/ASN.2008111133