Acknowledgement
This work was funded by Dengfeng Clinical Medicine Grant Support (No. 2021024) and the National Natural Science Foundation of China (No. 81770617). We thank Dr. Feng Zheng for providing the human kidney proximal tubular epithelial cell HK-2 and rat kidney proximal tubular epithelial cell NRK-52E.
References
- Anger, E. E., Yu, F. and Li, J. (2020) Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches. Int. J. Mol. Sci. 21, 1157. https://doi.org/10.3390/ijms21031157
- Balachandran, P., Wei, F., Lin, R. C., Khan, I. A. and Pasco, D. S. (2005) Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int. 67, 1797-1805. https://doi.org/10.1111/j.1523-1755.2005.00277.x
- Brooks, C., Wei, Q., Cho, S. G. and Dong, Z. (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285. https://doi.org/10.1172/JCI37829
- Cardinali, D. P., Esquifino, A. I., Srinivasan, V. and Pandi-Perumal, S. R. (2008) Melatonin and the immune system in aging. Neuroimmunomodulation 15, 272-278. https://doi.org/10.1159/000156470
- Chang, H. R., Lian, J. D., Lo, C. W., Huang, H. P. and Wang, C. J. (2007) Aristolochic acid-induced cell cycle G1 arrest in human urothelium SV-HUC-1 cells. Food Chem. Toxicol. 45, 396-402. https://doi.org/10.1016/j.fct.2006.08.020
- Chen, C. H., Dickman, K. G., Moriya, M., Zavadil, J., Sidorenko, V. S., Edwards, K. L., Gnatenko, D. V., Wu, L., Turesky, R. J., Wu, X. R., Pu, Y. S. and Grollman, A. P. (2012) Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl. Acad. Sci. U.S.A. 109, 8241-8246. https://doi.org/10.1073/pnas.1119920109
- Chevalier, R. L. (2016) The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Renal Physiol. 311, F145-F161. https://doi.org/10.1152/ajprenal.00164.2016
- Cosyns, J. P., Jadoul, M., Squifflet, J. P., Wese, F. X. and van Ypersele de Strihou, C. (1999) Urothelial lesions in Chinese-herb nephropathy. Am. J. Kidney Dis. 33, 1011-1017. https://doi.org/10.1016/S0272-6386(99)70136-8
- Dai, H., Deng, Y., Zhang, J., Han, H., Zhao, M., Li, Y., Zhang, C., Tian, J., Bing, G. and Zhao, L. (2015) PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 334, 72-80. https://doi.org/10.1016/j.tox.2015.06.003
- Debelle, F. D., Vanherweghem, J. L. and Nortier, J. L. (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 74, 158-169. https://doi.org/10.1038/ki.2008.129
- El-Sokkary, G. H., Omar, H. M., Hassanein, A. F., Cuzzocrea, S. and Reiter, R. J. (2002) Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni. Free Radic. Biol. Med. 32, 319-332.
- Fu, Y., Tang, C., Cai, J., Chen, G., Zhang, D. and Dong, Z. (2018) Rodent models of AKI-CKD transition. Am. J. Physiol. Renal Physiol. 315, F1098-F1106. https://doi.org/10.1152/ajprenal.00199.2018
- Ganguly, K., Sharma, A. V., Reiter, R. J. and Swarnakar, S. (2010) Melatonin promotes angiogenesis during protection and healing of indomethacin-induced gastric ulcer: role of matrix metaloproteinase-2. J. Pineal Res. 49, 130-140. https://doi.org/10.1111/j.1600-079X.2010.00776.x
- Hall, A. M. and Schuh, C. D. (2016) Mitochondria as therapeutic targets in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 25, 355-362. https://doi.org/10.1097/MNH.0000000000000228
- Han, Y. S., Kim, S. M., Lee, J. H., Jung, S. K., Noh, H. and Lee, S. H. (2019) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrP(C)-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535. https://doi.org/10.1111/jpi.12535
- Hardeland, R. (2012) Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. ScientificWorldJournal 2012, 640389.
- Higgins, G. C. and Coughlan, M. T. (2014) Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol. 171, 1917-1942. https://doi.org/10.1111/bph.12503
- Hsin, Y. H., Cheng, C. H., Tzen, J. T., Wu, M. J., Shu, K. H. and Chen, H. C. (2006) Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells. Apoptosis 11, 2167-2177. https://doi.org/10.1007/s10495-006-0289-0
- Huo, X., Wang, C., Yu, Z., Peng, Y., Wang, S., Feng, S., Zhang, S., Tian, X., Sun, C., Liu, K., Deng, S. and Ma, X. (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J. Pineal Res. 62, e12390. https://doi.org/10.1111/jpi.12390
- Ishimoto, Y. and Inagi, R. (2016) Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069. https://doi.org/10.1093/ndt/gfv317
- Jin, H., Wang, Y., Zhou, L., Liu, L., Zhang, P., Deng, W. and Yuan, Y. (2014) Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J. Pineal Res. 57, 442-450. https://doi.org/10.1111/jpi.12184
- Jones, J., Holmen, J., De Graauw, J., Jovanovich, A., Thornton, S. and Chonchol, M. (2012) Association of complete recovery from acute kidney injury with incident CKD stage 3 and all-cause mortality. Am. J. Kidney Dis. 60, 402-408. https://doi.org/10.1053/j.ajkd.2012.03.014
- Kim, J. Y., Leem, J. and Jeon, E. J. (2019) Protective effects of melatonin against aristolochic acid-induced nephropathy in mice. Biomolecules 10, 11. https://doi.org/10.3390/biom10010011
- Ko, S. F., Chen, Y. L., Sung, P. H., Chiang, J. Y., Chu, Y. C., Huang, C. C., Huang, C. R. and Yip, H. K. (2020) Hepatic (31) P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J. Cell. Mol. Med. 24, 10088-10099. https://doi.org/10.1111/jcmm.15617
- Li, Y., Liu, Z., Guo, X., Shu, J., Chen, Z. and Li, L. (2006) Aristolochic acid I-induced DNA damage and cell cycle arrest in renal tubular epithelial cells in vitro. Arch. Toxicol. 80, 524-532. https://doi.org/10.1007/s00204-006-0090-4
- Luciano, R. L. and Perazella, M. A. (2015) Aristolochic acid nephropathy: epidemiology, clinical presentation, and treatment. Drug Saf. 38, 55-64. https://doi.org/10.1007/s40264-014-0244-x
- Pozdzik, A. A., Salmon, I. J., Debelle, F. D., Decaestecker, C., Van den Branden, C., Verbeelen, D., Deschodt-Lanckman, M. M., Vanherweghem, J. L. and Nortier, J. L. (2008) Aristolochic acid induces proximal tubule apoptosis and epithelial to mesenchymal transformation. Kidney Int. 73, 595-607. https://doi.org/10.1038/sj.ki.5002714
- Priestap, H. A., Torres, M. C., Rieger, R. A., Dickman, K. G., Freshwater, T., Taft, D. R., Barbieri, M. A., and Iden, C. R. (2012) Aristolochic acid I metabolism in the isolated perfused rat kidney. Chem. Res. Toxicol. 25, 130-139. https://doi.org/10.1021/tx200333g
- Qi, X., Cai, Y., Gong, L., Liu, L., Chen, F., Xiao, Y., Wu, X., Li, Y., Xue, X. and Ren, J. (2007) Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol. Appl. Pharmacol. 222, 105-110. https://doi.org/10.1016/j.taap.2007.03.029
- Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A. and Xu, B. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell. Mol. Life Sci. 74, 3863-3881. https://doi.org/10.1007/s00018-017-2609-7
- Romanov, V., Whyard, T. C., Waltzer, W. C., Grollman, A. P. and Rosenquist, T. (2015) Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch. Toxicol. 89, 47-56. https://doi.org/10.1007/s00204-014-1249-z
- Simoes, M. L., Hockley, S. L., Schwerdtle, T., Gamboa da Costa, G., Schmeiser, H. H., Phillips, D. H. and Arlt, V. M. (2008) Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53. Toxicol. Appl. Pharmacol. 232, 86-98. https://doi.org/10.1016/j.taap.2008.06.006
- Singh, M. and Jadhav, H. R. (2014) Melatonin: functions and ligands. Drug Discov. Today 19, 1410-1418. https://doi.org/10.1016/j.drudis.2014.04.014
- Suzuki, T., Yamaguchi, H., Kikusato, M., Hashizume, O., Nagatoishi, S., Matsuo, A., Sato, T., Kudo, T., Matsuhashi, T., Murayama, K., Ohba, Y., Watanabe, S., Kanno, S., Minaki, D., Saigusa, D., Shinbo, H., Mori, N., Yuri, A., Yokoro, M., Mishima, E., Shima, H., Akiyama, Y., Takeuchi, Y., Kikuchi, K., Toyohara, T., Suzuki, C., Ichimura, T., Anzai, J., Kohzuki, M., Mano, N., Kure, S., Yanagisawa, T., Tomioka, Y., Toyomizu, M., Tsumoto, K., Nakada, K., Bonventre, J. V., Ito, S., Osaka, H., Hayashi, K. and Abe, T. (2016) Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage. J. Am. Soc. Nephrol. 27, 1925-1932. https://doi.org/10.1681/ASN.2015060623
- Sweetwyne, M. T., Pippin, J. W., Eng, D. G., Hudkins, K. L., Chiao, Y. A., Campbell, M. D., Marcinek, D. J., Alpers, C. E., Szeto, H. H., Rabinovitch, P. S. and Shankland, S. J. (2017) The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 91, 1126-1145. https://doi.org/10.1016/j.kint.2016.10.036
- Szeto, H. H., Liu, S., Soong, Y., Seshan, S. V., Cohen-Gould, L., Manichev, V., Feldman, L. C. and Gustafsson, T. (2017) Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 28, 1437-1449. https://doi.org/10.1681/ASN.2016070761
- Tamarindo, G. H., Ribeiro, D. L., Gobbo, M. G., Guerra, L. H. A., Rahal, P., Taboga, S. R., Gadelha, F. R. and Goes, R. M. (2019) Melatonin and docosahexaenoic acid decrease proliferation of PNT1A prostate benign cells via modulation of mitochondrial bioenergetics and ROS production. Oxid. Med. Cell. Longev. 2019, 5080798.
- Tan, D. X. and Hardeland, R. (2021) The reserve/maximum capacity of melatonin's synthetic function for the potential dimorphism of melatonin production and its biological significance in mammals. Molecules 26, 7302. https://doi.org/10.3390/molecules26237302
- Tan, D. X., Hardeland, R., Manchester, L. C., Paredes, S. D., Korkmaz, A., Sainz, R. M., Mayo, J. C., Fuentes-Broto, L. and Reiter, R. J. (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 85, 607-623. https://doi.org/10.1111/j.1469-185X.2009.00118.x
- Tan, D. X., Manchester, L. C., Qin, L. and Reiter, R. J. (2016) Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 17, 2124. https://doi.org/10.3390/ijms17122124
- Tang, C., Han, H., Yan, M., Zhu, S., Liu, J., Liu, Z., He, L., Tan, J., Liu, Y., Liu, H., Sun, L., Duan, S., Peng, Y., Liu, F., Yin, X. M., Zhang, Z. and Dong, Z. (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14, 880-897. https://doi.org/10.1080/15548627.2017.1405880
- Tang, C., He, L., Liu, J. and Dong, Z. (2015) Mitophagy: basic mechanism and potential role in kidney diseases. Kidney Dis. (Basel) 1, 71-79. https://doi.org/10.1159/000381510
- Thangam, R., Senthilkumar, D., Suresh, V., Sathuvan, M., Sivasubramanian, S., Pazhanichamy, K., Gorlagunta, P. K., Kannan, S., Gunasekaran, P., Rengasamy, R. and Sivaraman, J. (2014) Induction of ROS-dependent mitochondria-mediated intrinsic apoptosis in MDA-MB-231 cells by glycoprotein from Codium decorticatum. J. Agric. Food Chem. 62, 3410-3421. https://doi.org/10.1021/jf405329e
- Wang, K., Feng, C., Li, C., Yao, J., Xie, X., Gong, L., Luan, Y., Xing, G., Zhu, X., Qi, X. and Ren, J. (2015) Baicalin protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A through the aromatic hydrocarbon receptor. Int. J. Mol. Sci. 16, 16454-16468. https://doi.org/10.3390/ijms160716454
- Wang, L., Liu, N., Xue, X. and Zhou, S. (2019) The effect of overexpression of the enhancer of zeste homolog 1 (EZH1) gene on aristolochic acid-induced injury in HK-2 human kidney proximal tubule cells in vitro. Med. Sci. Monit. 25, 801-810. https://doi.org/10.12659/MSM.911611
- Wang, R., Pan, J., Han, J., Gong, M., Liu, L., Zhang, Y., Liu, Y., Wang, D., Tang, Q., Wu, N., Wang, L., Yan, J., Li, H. and Yuan, Y. (2022) Melatonin attenuates dasatinib-aggravated hypoxic pulmonary hypertension via inhibiting pulmonary vascular remodeling. Front. Cardiovasc. Med. 9, 790921. https://doi.org/10.3389/fcvm.2022.790921
- Wang, T., Liu, B., Guan, Y., Gong, M., Zhang, W., Pan, J., Liu, Y., Liang, R., Yuan, Y. and Ye, L. (2018) Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac. Cancer 9, 368-375. https://doi.org/10.1111/1759-7714.12587
- Wang, X., Xue, N., Zhao, S., Shi, Y., Ding, X. and Fang, Y. (2020) Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 11, 620. https://doi.org/10.1038/s41419-020-02876-1
- Yang, C. C., Wu, C. T., Chen, L. P., Hung, K. Y., Liu, S. H. and Chiang, C. K. (2013) Autophagy induction promotes aristolochic acidI-induced renal injury in vivo and in vitro. Toxicology 312, 63-73. https://doi.org/10.1016/j.tox.2013.07.017
- Yu, Z., Tian, X., Peng, Y., Sun, Z., Wang, C., Tang, N., Li, B., Jian, Y., Wang, W., Huo, X. and Ma, X. (2018) Mitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin-induced apoptosis in neural cancer cells. J. Pineal Res. 65, e12478. https://doi.org/10.1111/jpi.12478
- Zhang, Y., ShiYang, X., Zhang, Y., Li, Y., Shi, X. and Xiong, B. (2019) Exposure to aristolochic acid I compromises the maturational competency of porcine oocytes via oxidative stress-induced DNA damage. Aging 11, 2241-2252. https://doi.org/10.18632/aging.101911
- Zhou, L., Fu, P., Huang, X. R., Liu, F., Lai, K. N. and Lan, H. Y. (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J. Am. Soc. Nephrol. 21, 31-41. https://doi.org/10.1681/ASN.2008111133