DOI QR코드

DOI QR Code

Growth Factors Upregulated by Uric Acid Affect Guanine Deaminase-Induced Melanogenesis

  • Nan-Hyung, Kim (Department of Dermatology, Dongguk University Ilsan Hospital) ;
  • Ai-Young, Lee (Department of Dermatology, Dongguk University Ilsan Hospital)
  • Received : 2022.10.29
  • Accepted : 2022.11.16
  • Published : 2023.01.01

Abstract

Uric acid produced by guanine deaminase (GDA) is involved in photoaging and hyperpigmentation. Reactive oxygen species (ROS) generated by uric acid plays a role in photoaging. However, the mechanism by which uric acid stimulates melanogenesis in GDA-overexpressing keratinocytes is unclear. Keratinocyte-derived paracrine factors have been identified as important mechanisms of ultraviolet-induced melanogenesis. Therefore, the role of paracrine melanogenic growth factors in GDA-induced hypermelanosis mediated by uric acid was examined. The relationships between ROS and these growth factors were examined. Primary cultured normal keratinocytes overexpressed with wild type or mutant GDA and those treated with xanthine or uric acid in the presence or absence of allopurinol, H2O2, or N-acetylcysteine (NAC) were used in this study. Intracellular and extracellular bFGF and SCF levels were increased in keratinocytes by wild type, but not by loss-of-function mutants of GDA overexpression. Culture supernatants from GDA-overexpressing keratinocytes stimulated melanogenesis, which was restored by anti-bFGF and anti-SCF antibodies. Allopurinol treatment reduced the expression levels of bFGF and SCF in both GDA-overexpressing and normal keratinocytes exposed to exogenous xanthine; the exogenous uric acid increased their expression levels. H2O2-stimulated tyrosinase expression and melanogenesis were restored by NAC pretreatment. However, H2O2 or NAC did not upregulate or downregulate bFGF or SCF, respectively. Overall, uric acid could be involved in melanogenesis induced by GDA overexpression in keratinocytes via bFGF and SCF upregulation not via ROS generation.

Keywords

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HP20C0131).

References

  1. Akum, B. F., Chen, M., Gunderson, S. I., Riefler, G. M., Scerri-Hansen, M. M. and Firestein, B. L. (2004) Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat. Neurosci. 7, 145-152. https://doi.org/10.1038/nn1179
  2. Box, N. F. and Terzian, T. (2008) The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 21, 525-533. https://doi.org/10.1111/j.1755-148X.2008.00495.x
  3. Brenner, M., Degitz, K., Besch, R. and Berking, C. (2005) Differential expression of melanoma-associated growth factors in keratinocytes and fibroblasts by ultraviolet A and ultraviolet B radiation. Br. J. Dermatol. 153, 733-739. https://doi.org/10.1111/j.1365-2133.2005.06780.x
  4. Cheong, K. A., Kil, I. S., Ko, H. W. and Lee, A.-Y. (2021) Upregulated guanine deaminase is involved in hyperpigmentation of seborrheic keratosis via uric acid release. Int. J. Mol. Sci. 22, 12501. https://doi.org/10.3390/ijms222212501
  5. Cheong, K. A. and Lee, A.-Y. (2020) Guanine deaminase stimulates ultraviolet-induced keratinocyte senescence in seborrhoeic keratosis via guanine metabolites. Acta Derm.-Venereol. 100, adv00109. https://doi.org/10.2340/00015555-3473
  6. Chung, B. Y., Noh, T. K., Yang, S. H., Kim, I. H., Lee, M. W., Yoon, T. J. and Chang, S. E. (2014) Gene expression profiling in melasma in Korean women. Dermatology 229, 333-342. https://doi.org/10.1159/000365080
  7. Furuhashi, M. (2020) New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am. J. Physiol. Endocrinol. Metab. 319, E827-E834. https://doi.org/10.1152/ajpendo.00378.2020
  8. Gilchrest, B. A., Park, H.-Y., Eller, M. S. and Yaar, M. (1996) Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol. 63, 1-10. https://doi.org/10.1111/j.1751-1097.1996.tb02988.x
  9. Guida, S., Guida, G. and Goding, C. R. (2021) MC1R functions, expression, and implications for targeted therapy. J. Invest. Dermatol. 142, 293-302.e1. https://doi.org/10.1016/j.jid.2021.06.018
  10. Hachiya, A., Kobayashi, A., Yoshida, Y., Kitahara, T., Takema, Y. and Imokawa, G. (2004) Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am. J. Pathol. 165, 2099-2109. https://doi.org/10.1016/S0002-9440(10)63260-9
  11. Hoyos, D., Greenbaum, B. and Levine, A. J. (2022) The genotypes and phenotypes of missense mutations in the proline domain of the p53 protein. Cell Death Differ. 29, 938-945. https://doi.org/10.1038/s41418-022-00980-7
  12. Hyter, S., Coleman, D. J., Ganguli-Indra, G., Merrill, G. F., Ma, S., Yanagisawa, M. and Indra, A. K. (2013) Endothelin-1 is a transcriptional target of p53 in epidermal keratinocytes and regulates ultraviolet-induced melanocyte homeostasis. Pigment Cell Melanoma Res. 26, 247-258. https://doi.org/10.1111/pcmr.12063
  13. Jung, J. M., Noh, T. K., Jo, S. Y., Kim, S. Y., Song, Y., Kim, Y.-H. and Chang, S. E. (2020) Guanine deaminase in human epidermal keratinocytes contributes to skin pigmentation. Molecules 25, 2637. https://doi.org/10.3390/molecules25112637
  14. Kim, N. H., Choi, S. H., Lee, T. R., Lee, C. H. and Lee, A. Y. (2016) Cadherin 11 involved in basement membrane damage and dermal changes in melasma. Acta Derm.-Venereol. 96, 635-640. https://doi.org/10.2340/00015555-2315
  15. Kim, N. H., Choi, S. H., Yi, N., Lee, T. R. and Lee, A. Y. (2017) Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing melanosome degradation via senescence-induced autophagy inhibition. Pigment Cell Melanoma Res. 30, 521-530. https://doi.org/10.1111/pcmr.12605
  16. Kwon, S. H., Na, J. I., Choi, J. Y. and Park, K. C. (2019) Melasma: updates and perspectives. Exp. Dermatol. 28, 704-708. https://doi.org/10.1111/exd.13844
  17. Lee, A.-Y. and Noh, M. (2013) The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents. Arch. Pharm. Res. 36, 792-801. https://doi.org/10.1007/s12272-013-0130-6
  18. Lee, A. Y. (2015) Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 28, 648-660. https://doi.org/10.1111/pcmr.12404
  19. Liu, N., Xu, H., Sun, Q., Yu, X., Chen, W., Wei, H., Jiang, J., Xu, Y. and Lu, W. (2021) The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxid. Med. Cell. Longev. 2021, 1470380. https://doi.org/10.1155/2021/1470380
  20. Lopez, S., Alonso, S., Garcia de Galdeano, A. and Smith-Zubiaga, I. (2015) Melanocytes from dark and light skin respond differently after ultraviolet B irradiation: effect of keratinocyte-conditioned medium. Photodermatol. Photoimmunol. Photomed. 31, 149-158. https://doi.org/10.1111/phpp.12169
  21. Manaka, I., Kadono, S., Kawashima, M., Kobayashi, T. and Imokawa, G. (2001) The mechanism of hyperpigmentation in seborrhoeic keratosis involves the high expression of endothelin-converting enzyme-1α and TNF-α, which stimulate secretion of endothelin 1. Br. J. Dermatol. 145, 895-903. https://doi.org/10.1046/j.1365-2133.2001.04521.x
  22. Maranduca, M. A., Branisteanu, D., Serban, D. N., Branisteanu, D. C., Stoleriu, G., Manolache, N. and Serban, I. L. (2019) Synthesis and physiological implications of melanic pigments. Oncol. Lett. 17, 4183-4187. https://doi.org/10.3892/ol.2019.10071
  23. Miyamura, Y., Coelho, S. G., Wolber, R., Miller, S. A., Wakamatsu, K., Zmudzka, B. Z., Ito, S., Smuda, C., Passeron, T. and Choi, W. (2007) Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res. 20, 2-13. https://doi.org/10.1111/j.1600-0749.2006.00358.x
  24. Murase, D., Hachiya, A., Amano, Y., Ohuchi, A., Kitahara, T. and Takema, Y. (2009) The essential role of p53 in hyperpigmentation of the skin via regulation of paracrine melanogenic cytokine receptor signaling. J. Biol. Chem. 284, 4343-4353. https://doi.org/10.1074/jbc.M805570200
  25. Orhan, I. E. and Deniz, F. S. (2021) Natural products and extracts as xantine oxidase inhibitors - a hope for gout disease? Curr. Pharm. Des. 27, 143-158. https://doi.org/10.2174/1381612826666200728144605
  26. Papaccio, F., D' Arino, A., Caputo, S. and Bellei, B. (2022) Focus on the contribution of oxidative stress in skin aging. Antioxidants 11, 1121. https://doi.org/10.3390/antiox11061121
  27. Passeron, T. and Picardo, M. (2018) Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 31, 461-465. https://doi.org/10.1111/pcmr.12684
  28. Stanisz, H., Stark, A., Kilch, T., Schwarz, E. C., Muller, C. S., Peinelt, C., Hoth, M., Niemeyer, B. A., Vogt, T. and Bogeski, I. (2012) ORAI1 Ca2+ channels control endothelin-1-induced mitogenesis and melanogenesis in primary human melanocytes. J. Invest. Dermatol. 132, 1443-1451. https://doi.org/10.1038/jid.2011.478
  29. Swope, V. B., Starner, R. J., Rauck, C. and Abdel-Malek, Z. A. (2020) Endothelin-1 and α-melanocortin have redundant effects on global genome repair in UV-irradiated human melanocytes despite distinct signaling pathways. Pigment Cell Melanoma Res. 33, 293-304. https://doi.org/10.1111/pcmr.12823
  30. Takano, K., Hachiya, A., Murase, D., Tanabe, H., Kasamatsu, S., Takahashi, Y., Moriwaki, S. and Hase, T. (2020) Quantitative changes in the secretion of exosomes from keratinocytes homeostatically regulate skin pigmentation in a paracrine manner. J. Dermatol. 47, 265-276. https://doi.org/10.1111/1346-8138.15202
  31. Takenaka, Y., Hoshino, Y., Nakajima, H., Hayashi, N., Kawashima, M. and Imokawa, G. (2013) Paracrine cytokine mechanisms underlying the hyperpigmentation of seborrheic keratosis in covered skin areas. J. Dermatol. 40, 533-542. https://doi.org/10.1111/1346-8138.12178
  32. Terazawa, S. and Imokawa, G. (2018) Signaling cascades activated by UVB in human melanocytes lead to the increased expression of melanocyte receptors, endothelin B receptor and c-KIT. Photochem. Photobiol. 94, 421-431. https://doi.org/10.1111/php.12848
  33. Vickneson, K. and George, J. (2020) Xanthine oxidoreductase inhibitors. In Reactive Oxygen Species, pp. 205-228. Springer.
  34. Yamaguchi, Y. and Hearing, V. J. (2009) Physiological factors that regulate skin pigmentation. Biofactors 35, 193-199. https://doi.org/10.1002/biof.29
  35. Yardman-Frank, J. M. and Fisher, D. E. (2021) Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp. Dermatol. 30, 560-571. https://doi.org/10.1111/exd.14260