DOI QR코드

DOI QR Code

Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure-Activity Relationship

  • Dooti, Kundu (College of Pharmacy, Chonnam National University) ;
  • Anlin, Zhu (College of Pharmacy, Chonnam National University) ;
  • Eunae, Kim (College of Pharmacy, Chosun University) ;
  • Suresh, Paudel (College of Pharmacy, Chonnam National University) ;
  • Choon-Gon, Jang (College of Pharmacy, Sungkyunkwan University) ;
  • Yong Sup, Lee (College of Pharmacy, Kyung Hee University) ;
  • Kyeong-Man, Kim (College of Pharmacy, Chonnam National University)
  • Received : 2022.04.10
  • Accepted : 2022.08.03
  • Published : 2023.01.01

Abstract

Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DA-induced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.

Keywords

Acknowledgement

This research was supported by the Ministry of Food and Drug Safety (19182MFDS403) and the National Research Foundation of Korea (2020R1F1A1072302), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (KRF-2020R1I1A3062151), and the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3A9G2077568).

References

  1. Bailey, B. A., Philips, S. R. and Boulton, A. A. (1987) In vivo release of endogenous dopamine, 5-hydroxytryptamine and some of their metabolites from rat caudate nucleus by phenylethylamine. Neurochem. Res. 12, 173-178. https://doi.org/10.1007/BF00979534
  2. Borowsky, B., Adham, N., Jones, K. A., Raddatz, R., Artymyshyn, R., Ogozalek, K. L., Durkin, M. M., Lakhlani, P. P., Bonini, J. A., Pathirana, S., Boyle, N., Pu, X., Kouranova, E., Lichtblau, H., Ochoa, F. Y., Branchek, T. A. and Gerald, C. (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 98, 8966-8971. https://doi.org/10.1073/pnas.151105198
  3. Bunzow, J. R., Sonders, M. S., Arttamangkul, S., Harrison, L. M., Zhang, G., Quigley, D. I., Darland, T., Suchland, K. L., Pasumamula, S., Kennedy, J. L., Olson, S. B., Magenis, R. E., Amara, S. G. and Grandy, D. K. (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181-1188. https://doi.org/10.1124/mol.60.6.1181
  4. Carroll, F. I., Howell, L. L. and Kuhar, M. J. (1999) Pharmacotherapies for treatment of cocaine abuse: preclinical aspects. J. Med. Chem. 42, 2721-2736. https://doi.org/10.1021/jm9706729
  5. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  6. Cocchi, V., Gasperini, S., Hrelia, P., Tirri, M., Marti, M. and Lenzi, M. (2020) Novel psychoactive phenethylamines: impact on genetic material. Int. J. Mol. Sci. 21, 9616. https://doi.org/10.3390/ijms21249616
  7. Coenen, V. A., Schumacher, L. V., Kaller, C., Schlaepfer, T. E., Reinacher, P. C., Egger, K., Urbach, H. and Reisert, M. (2018) The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin. 18, 770-783. https://doi.org/10.1016/j.nicl.2018.03.019
  8. Dean, B. V., Stellpflug, S. J., Burnett, A. M. and Engebretsen, K. M. (2013) 2C or not 2C: phenethylamine designer drug review. J. Med. Toxicol. 9, 172-178. https://doi.org/10.1007/s13181-013-0295-x
  9. Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., Grandy, D. K., Low, M. J., Gerhardt, G. A. and Zahniser, N. R. (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J. Neurochem. 72, 148-156. https://doi.org/10.1046/j.1471-4159.1999.0720148.x
  10. Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. and Wang, S. (2003) Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorg. Med. Chem. Lett. 13, 513-517. https://doi.org/10.1016/S0960-894X(02)00943-5
  11. Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E. and Weihe, E. (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. U.S.A. 93, 5166-5171. https://doi.org/10.1073/pnas.93.10.5166
  12. Ghisi, V., Ramsey, A. J., Masri, B., Gainetdinov, R. R., Caron, M. G. and Salahpour, A. (2009) Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell. Signal. 21, 87-94. https://doi.org/10.1016/j.cellsig.2008.09.011
  13. Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606-612. https://doi.org/10.1038/379606a0
  14. Hernandez, G., Hamdani, S., Rajabi, H., Conover, K., Stewart, J., Arvanitogiannis, A. and Shizgal, P. (2006) Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav. Neurosci. 120, 888-904. https://doi.org/10.1037/0735-7044.120.4.888
  15. Hossain, M., Wickramasekara, R. N. and Carvelli, L. (2014) beta-Phenylethylamine requires the dopamine transporter to increase extracellular dopamine in Caenorhabditis elegans dopaminergic neurons. Neurochem. Int. 73, 27-31. https://doi.org/10.1016/j.neuint.2013.10.010
  16. Huey, R., Morris, G. M., Olson, A. J. and Goodsell, D. S. (2007) A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28, 1145-1152. https://doi.org/10.1002/jcc.20634
  17. Iversen, L., Gibbons, S., Treble, R., Setola, V., Huang, X.-P. and Roth, B. L. (2013) Neurochemical profiles of some novel psychoactive substances. Eur. J. Pharmacol. 700, 147-151. https://doi.org/10.1016/j.ejphar.2012.12.006
  18. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
  19. Juorio, A. V., Paterson, I. A., Zhu, M. Y. and Matte, G. (1991) Electrical stimulation of the substantia nigra and changes of 2-phenylethylamine synthesis in the rat striatum. J. Neurochem. 56, 213-220. https://doi.org/10.1111/j.1471-4159.1991.tb02583.x
  20. Kilty, J. E., Lorang, D. and Amara, S. G. (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254, 578-579. https://doi.org/10.1126/science.1948035
  21. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  22. Koes, D. R., Baumgartner, M. P. and Camacho, C. J. (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893-1904. https://doi.org/10.1021/ci300604z
  23. Madras, B. K., Miller, G. M. and Fischman, A. J. (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1397-1409. https://doi.org/10.1016/j.biopsych.2004.10.011
  24. Masson, J., Sagne, C., Hamon, M. and El Mestikawy, S. (1999) Neurotransmitter transporters in the central nervous system. Pharmacol. Rev. 51, 439-464.
  25. Meiergerd, S. M., Patterson, T. A. and Schenk, J. O. (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J. Neurochem. 61, 764-767. https://doi.org/10.1111/j.1471-4159.1993.tb02185.x
  26. Miller, G. M. (2011) The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. 116, 164-176. https://doi.org/10.1111/j.1471-4159.2010.07109.x
  27. Nakamura, M., Ishii, A. and Nakahara, D. (1998) Characterization of beta-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study. Eur. J. Pharmacol. 349, 163-169. https://doi.org/10.1016/S0014-2999(98)00191-5
  28. Panenka, W. J., Procyshyn, R. M., Lecomte, T., Macewan, G. W., Flynn, S. W., Honer, W. G. and Barr, A. M. (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 129, 167-179. https://doi.org/10.1016/j.drugalcdep.2012.11.016
  29. Paterson, I. A., Juorio, A. V. and Boulton, A. A. (1990) 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J. Neurochem. 55, 1827-1837. https://doi.org/10.1111/j.1471-4159.1990.tb05764.x
  30. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  31. Quiroga, R. and Villarreal, M. A. (2016) Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening. PLoS One 11, e0155183. https://doi.org/10.1371/journal.pone.0155183
  32. Robinson, T. E. and Becker, J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 396, 157-198. https://doi.org/10.1016/S0006-8993(86)80193-7
  33. Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M. and Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254, 576-578. https://doi.org/10.1126/science.1948034
  34. Snyder, S. H. (1973) Amphetamine psychosis: a "model" schizophrenia mediated by catecholamines. Am. J. Psychiatry 130, 61-67. https://doi.org/10.1176/ajp.130.1.61
  35. Sotnikova, T. D., Budygin, E. A., Jones, S. R., Dykstra, L. A., Caron, M. G. and Gainetdinov, R. R. (2004) Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J. Neurochem. 91, 362-373. https://doi.org/10.1111/j.1471-4159.2004.02721.x
  36. Torres, G. E., Yao, W. D., Mohn, A. R., Quan, H., Kim, K. M., Levey, A. I., Staudinger, J. and Caron, M. G. (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30, 121-134. https://doi.org/10.1016/S0896-6273(01)00267-7
  37. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  38. Wang, K. H., Penmatsa, A. and Gouaux, E. (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322-327. https://doi.org/10.1038/nature14431
  39. Weaver, M. F., Hopper, J. A. and Gunderson, E. W. (2015) Designer drugs 2015: assessment and management. Addict. Sci. Clin. Pract. 10, 8. https://doi.org/10.1186/s13722-015-0024-7
  40. Wohlfarth, A. and Weinmann, W. (2010) Bioanalysis of new designer drugs. Bioanalysis 2, 965-979. https://doi.org/10.4155/bio.10.32
  41. Xie, Z. and Miller, G. M. (2008) Beta-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. J. Pharmacol. Exp. Ther. 325, 617-628. https://doi.org/10.1124/jpet.107.134247
  42. Yu, S. S., Lefkowitz, R. J. and Hausdorff, W. P. (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337-341. https://doi.org/10.1016/S0021-9258(18)54155-7
  43. Zhang, X. and Kim, K. M. (2017) Multifactorial regulation of G protein-coupled receptor endocytosis. Biomol. Ther. (Seoul) 25, 26-43. https://doi.org/10.4062/biomolther.2016.186