Acknowledgement
This research was supported by the Ministry of Food and Drug Safety (19182MFDS403) and the National Research Foundation of Korea (2020R1F1A1072302), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (KRF-2020R1I1A3062151), and the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2017M3A9G2077568).
References
- Bailey, B. A., Philips, S. R. and Boulton, A. A. (1987) In vivo release of endogenous dopamine, 5-hydroxytryptamine and some of their metabolites from rat caudate nucleus by phenylethylamine. Neurochem. Res. 12, 173-178. https://doi.org/10.1007/BF00979534
- Borowsky, B., Adham, N., Jones, K. A., Raddatz, R., Artymyshyn, R., Ogozalek, K. L., Durkin, M. M., Lakhlani, P. P., Bonini, J. A., Pathirana, S., Boyle, N., Pu, X., Kouranova, E., Lichtblau, H., Ochoa, F. Y., Branchek, T. A. and Gerald, C. (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 98, 8966-8971. https://doi.org/10.1073/pnas.151105198
- Bunzow, J. R., Sonders, M. S., Arttamangkul, S., Harrison, L. M., Zhang, G., Quigley, D. I., Darland, T., Suchland, K. L., Pasumamula, S., Kennedy, J. L., Olson, S. B., Magenis, R. E., Amara, S. G. and Grandy, D. K. (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181-1188. https://doi.org/10.1124/mol.60.6.1181
- Carroll, F. I., Howell, L. L. and Kuhar, M. J. (1999) Pharmacotherapies for treatment of cocaine abuse: preclinical aspects. J. Med. Chem. 42, 2721-2736. https://doi.org/10.1021/jm9706729
- Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
- Cocchi, V., Gasperini, S., Hrelia, P., Tirri, M., Marti, M. and Lenzi, M. (2020) Novel psychoactive phenethylamines: impact on genetic material. Int. J. Mol. Sci. 21, 9616. https://doi.org/10.3390/ijms21249616
- Coenen, V. A., Schumacher, L. V., Kaller, C., Schlaepfer, T. E., Reinacher, P. C., Egger, K., Urbach, H. and Reisert, M. (2018) The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin. 18, 770-783. https://doi.org/10.1016/j.nicl.2018.03.019
- Dean, B. V., Stellpflug, S. J., Burnett, A. M. and Engebretsen, K. M. (2013) 2C or not 2C: phenethylamine designer drug review. J. Med. Toxicol. 9, 172-178. https://doi.org/10.1007/s13181-013-0295-x
- Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., Grandy, D. K., Low, M. J., Gerhardt, G. A. and Zahniser, N. R. (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J. Neurochem. 72, 148-156. https://doi.org/10.1046/j.1471-4159.1999.0720148.x
- Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M. and Wang, S. (2003) Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorg. Med. Chem. Lett. 13, 513-517. https://doi.org/10.1016/S0960-894X(02)00943-5
- Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E. and Weihe, E. (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. U.S.A. 93, 5166-5171. https://doi.org/10.1073/pnas.93.10.5166
- Ghisi, V., Ramsey, A. J., Masri, B., Gainetdinov, R. R., Caron, M. G. and Salahpour, A. (2009) Reduced D2-mediated signaling activity and trans-synaptic upregulation of D1 and D2 dopamine receptors in mice overexpressing the dopamine transporter. Cell. Signal. 21, 87-94. https://doi.org/10.1016/j.cellsig.2008.09.011
- Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. and Caron, M. G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606-612. https://doi.org/10.1038/379606a0
- Hernandez, G., Hamdani, S., Rajabi, H., Conover, K., Stewart, J., Arvanitogiannis, A. and Shizgal, P. (2006) Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav. Neurosci. 120, 888-904. https://doi.org/10.1037/0735-7044.120.4.888
- Hossain, M., Wickramasekara, R. N. and Carvelli, L. (2014) beta-Phenylethylamine requires the dopamine transporter to increase extracellular dopamine in Caenorhabditis elegans dopaminergic neurons. Neurochem. Int. 73, 27-31. https://doi.org/10.1016/j.neuint.2013.10.010
- Huey, R., Morris, G. M., Olson, A. J. and Goodsell, D. S. (2007) A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28, 1145-1152. https://doi.org/10.1002/jcc.20634
- Iversen, L., Gibbons, S., Treble, R., Setola, V., Huang, X.-P. and Roth, B. L. (2013) Neurochemical profiles of some novel psychoactive substances. Eur. J. Pharmacol. 700, 147-151. https://doi.org/10.1016/j.ejphar.2012.12.006
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
- Juorio, A. V., Paterson, I. A., Zhu, M. Y. and Matte, G. (1991) Electrical stimulation of the substantia nigra and changes of 2-phenylethylamine synthesis in the rat striatum. J. Neurochem. 56, 213-220. https://doi.org/10.1111/j.1471-4159.1991.tb02583.x
- Kilty, J. E., Lorang, D. and Amara, S. G. (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254, 578-579. https://doi.org/10.1126/science.1948035
- Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
- Koes, D. R., Baumgartner, M. P. and Camacho, C. J. (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53, 1893-1904. https://doi.org/10.1021/ci300604z
- Madras, B. K., Miller, G. M. and Fischman, A. J. (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1397-1409. https://doi.org/10.1016/j.biopsych.2004.10.011
- Masson, J., Sagne, C., Hamon, M. and El Mestikawy, S. (1999) Neurotransmitter transporters in the central nervous system. Pharmacol. Rev. 51, 439-464.
- Meiergerd, S. M., Patterson, T. A. and Schenk, J. O. (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J. Neurochem. 61, 764-767. https://doi.org/10.1111/j.1471-4159.1993.tb02185.x
- Miller, G. M. (2011) The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. 116, 164-176. https://doi.org/10.1111/j.1471-4159.2010.07109.x
- Nakamura, M., Ishii, A. and Nakahara, D. (1998) Characterization of beta-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study. Eur. J. Pharmacol. 349, 163-169. https://doi.org/10.1016/S0014-2999(98)00191-5
- Panenka, W. J., Procyshyn, R. M., Lecomte, T., Macewan, G. W., Flynn, S. W., Honer, W. G. and Barr, A. M. (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 129, 167-179. https://doi.org/10.1016/j.drugalcdep.2012.11.016
- Paterson, I. A., Juorio, A. V. and Boulton, A. A. (1990) 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J. Neurochem. 55, 1827-1837. https://doi.org/10.1111/j.1471-4159.1990.tb05764.x
- Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
- Quiroga, R. and Villarreal, M. A. (2016) Vinardo: a scoring function based on Autodock Vina improves scoring, docking, and virtual screening. PLoS One 11, e0155183. https://doi.org/10.1371/journal.pone.0155183
- Robinson, T. E. and Becker, J. B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 396, 157-198. https://doi.org/10.1016/S0006-8993(86)80193-7
- Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M. and Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254, 576-578. https://doi.org/10.1126/science.1948034
- Snyder, S. H. (1973) Amphetamine psychosis: a "model" schizophrenia mediated by catecholamines. Am. J. Psychiatry 130, 61-67. https://doi.org/10.1176/ajp.130.1.61
- Sotnikova, T. D., Budygin, E. A., Jones, S. R., Dykstra, L. A., Caron, M. G. and Gainetdinov, R. R. (2004) Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine. J. Neurochem. 91, 362-373. https://doi.org/10.1111/j.1471-4159.2004.02721.x
- Torres, G. E., Yao, W. D., Mohn, A. R., Quan, H., Kim, K. M., Levey, A. I., Staudinger, J. and Caron, M. G. (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30, 121-134. https://doi.org/10.1016/S0896-6273(01)00267-7
- Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
- Wang, K. H., Penmatsa, A. and Gouaux, E. (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322-327. https://doi.org/10.1038/nature14431
- Weaver, M. F., Hopper, J. A. and Gunderson, E. W. (2015) Designer drugs 2015: assessment and management. Addict. Sci. Clin. Pract. 10, 8. https://doi.org/10.1186/s13722-015-0024-7
- Wohlfarth, A. and Weinmann, W. (2010) Bioanalysis of new designer drugs. Bioanalysis 2, 965-979. https://doi.org/10.4155/bio.10.32
- Xie, Z. and Miller, G. M. (2008) Beta-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. J. Pharmacol. Exp. Ther. 325, 617-628. https://doi.org/10.1124/jpet.107.134247
- Yu, S. S., Lefkowitz, R. J. and Hausdorff, W. P. (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337-341. https://doi.org/10.1016/S0021-9258(18)54155-7
- Zhang, X. and Kim, K. M. (2017) Multifactorial regulation of G protein-coupled receptor endocytosis. Biomol. Ther. (Seoul) 25, 26-43. https://doi.org/10.4062/biomolther.2016.186