• Title/Summary/Keyword: Mitochondrial damage

Search Result 277, Processing Time 0.026 seconds

Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer's disease

  • Yoo, Seung-Min;Park, Jisu;Kim, Seo-Hyun;Jung, Yong-Keun
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.35-46
    • /
    • 2020
  • Despite enduring diverse insults, mitochondria maintain normal functions through mitochondrial quality control. However, the failure of mitochondrial quality control resulting from excess damage and mechanical defects causes mitochondrial dysfunction, leading to various human diseases. Recent studies have reported that mitochondrial defects are found in Alzheimer's disease (AD) and worsen AD symptoms. In AD pathogenesis, mitochondrial dysfunction-driven generation of reactive oxygen species (ROS) and their contribution to neuronal damage has been widely studied. In contrast, studies on mitochondrial dysfunction-associated inflammatory responses have been relatively scarce. Moreover, ROS produced upon failure of mitochondrial quality control may be linked to the inflammatory response and influence the progression of AD. Thus, this review will focus on inflammatory pathways that are associated with and initiated through defective mitochondria and will summarize recent progress on the role of mitochondria-mediated inflammation in AD. We will also discuss how reducing mitochondrial dysfunction-mediated inflammation could affect AD.

Regional Differences in Mitochondrial Anti-oxidant State during Ischemic Preconditioning in Rat Heart

  • Thu, Vu Thi;Cuong, Dang Van;Kim, Na-Ri;Youm, Jae-Boum;Warda, Mohamad;Park, Won-Sun;Ko, Jae-Hong;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2007
  • Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.

Quercetin Induces Mitochondrial Biogenesis via HO-1 Expression in HepG2 Cell (HepG2 cell에서 quercetin의 HO-1 발현을 통한 mitochondria의 생합성 유도 효과에 관한 연구)

  • Kang, Jaekoo;Jang, Sang Chul;Lee, Ki Seung;Kim, Jin Hee;Chong, Myong Soo
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.21 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Flavonoids show diverse bioactivities, such as anti-oxidant, anti-cancer, anti-allergic, anti-inflammatory, and anti-viral. Quercetin is one of the flavonoids present in a wide range of plants, especially onions and consumed all over the world. Recently, it is known that quercetin induces mitochondrial biogenesis in vivo and in vitro. However, detail mechanism of these actions remains unknown. We investigated quercetin's effects on mitochondrial biogenesis in HepG2 cells, and determined the mechanisms involved. We found that quercetin treatment induced the expression of mitochondrial biogenesis activators, $PGC-1{\alpha}$, NRF-1, TFAM, and mitochondrial proteins, cytochorome c and complex IV (COXIV). Moreover, amount of mitochondrial DNA was also increased by quercetin. Quercetin has been known to induce heme oxygenase (HO)-1 in several types of cells. Here, we found quercetin induces HO-1, and inhibition of HO-1 or CO, which is product of HO-1, decreased quercetin-induced mitochondrial biogenesis such as induction of $PGC-1{\alpha}$, NRF-1, TFAM, cytochorome c, COXIV, and mitochondrial DNA. These findings imply that quercetin can increase mitochondrial biogenesis via HO-1/CO system. High glucose results in dysfunction of mitochondria biogenesis. In the present study, 25 mM glucose decreased mitochondrial biogenesis and this damage was restored by quercetin. Conversely, inhibition of HO-1 or CO inhibited quercetin-induced mitochondrial biogenesis rescue. These results suggest that quercetin enhances mitochondrial biogenesis via HO-1/CO system and hence, can rescue mitochondria from damage by high glucose.

  • PDF

Xylene Induces Oxidative Stress and Mitochondria Damage in Isolated Human Lymphocytes

  • Salimi, Ahmad;Talatappe, Behnaz Shoja;Pourahmad, Jalal
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.233-238
    • /
    • 2017
  • Xylene is a cyclic hydrocarbon and an environmental pollutant. It is also used in medical technology, paints, dyes, polishes and in many industries as a solvent; therefore, an understanding of the interaction between xylene and human lymphocytes is of significant interest. Biochemical assessment was used to demonstrate that exposure of lymphocytes to xylene induces cytotoxicity (at 6 hr), generates intracellular reactive oxygen species, collapse of mitochondrial membrane potential, lysosomal injury, lipid peroxidation and depletion of glutathione (at 3 hr). The findings show that xylene triggers oxidative stress and organelle damage in lymphocytes. The results of our study suggest that the use of antioxidant, mitochondrial and lysosomal protective agents can be helpful for individuals subject to chronic exposure to xylene.

Proposed Mechanisms of Photobiomodulation (PBM) Mediated via the Stimulation of Mitochondrial Activity in Peripheral Nerve Injuries

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.195-200
    • /
    • 2021
  • Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.

Mitochondrial DNA Mutation and Oxidative Stress

  • Kim, Tae-Ho;Kim, Hans-H.;Joo, Hyun
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.16.1-16.8
    • /
    • 2011
  • Defects in mitochondrial DNA (mtDNA) cause many human diseases and are critical factors that contribute to aging. The mechanisms of maternally-inherited mtDNA mutations are well studied. However, the role of acquired mutations during the aging process is still poorly understood. The most plausible mechanism is that increased reactive oxygen species (ROS) may affect the opening of mitochondrial voltage dependent anion channel (VDAC) and thus results in damage to mtDNA. This review focuses on recent trends in mtDNA research and the mutations that appear to be associated with increased ROS.

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian Sun;Jinjin Pan;Qinlong Liu;Jizhong Cheng;Qing Tang;Yuke Ji;Ke Cheng;Rui wang;Liang Liu;Dingyou Wang;Na Wu;Xu Zheng;Junxia Li;Xueyan Zhang;Zhilong Zhu;Yanchun Ding;Feng Zheng;Jia Li;Ying Zhang;Yuhui Yuan
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.97-107
    • /
    • 2023
  • Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.

C-reactive protein accelerates DRP1-mediated mitochondrial fission by modulating ERK1/2-YAP signaling in cardiomyocytes

  • Suyeon Jin;Chan Joo Lee;Gibbeum Lim;Sungha Park;Sang-Hak Lee;Ji Hyung Chung;Jaewon Oh;Seok-Min Kang
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.663-668
    • /
    • 2023
  • C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRP-induced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage.

Promoting Effect of Hydrogen Peroxide on 1-Methyl-4-phenylpyridinium-induced Mitochondrial Dysfunction and Cell Death in PC12 Cells

  • Lee, Dong-Hee;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The promoting effect of hydrogen peroxide ($H_2O_2$) against the cytotoxicity of 1-methyl-4-phenylpyridinium ($MPP^+$) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with $MPP^+$ resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Addition of $H_2O_2$ enhanced the $MPP^+-induced$ nuclear damage and cell death. Catalase, Carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the cytotoxic effect of $MPP^+$ in the presence of $H_2O_2$. Addition of $H_2O_2$ promoted the change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to $MPP^+$ in PC12 cells. The results show that the $H_2O_2$ treatment promotes the cytotoxicity of $MPP^+$ against PC12 cells. $H_2O_2$ may enhance the $MPP^+$-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that $H_2O_2$ as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by neurotoxins.