DOI QR코드

DOI QR Code

아쿠아포닉스의 생육 환경을 고려한 성장 측정 시스템의 설계

A Design of Growth Measurement System Considering the Cultivation Environment of Aquaponics

  • 이현섭 (동의대학교 응용소프트웨어 공학과) ;
  • 김진덕 (동의대학교 컴퓨터공학과)
  • Hyoun-Sup, Lee (Department of Applied Software Engineering, Dong-Eui University) ;
  • Jin-deog, Kim (Department of Computer Engineering, Dong-eui University)
  • 투고 : 2022.11.30
  • 심사 : 2022.12.14
  • 발행 : 2023.01.31

초록

웰빙과 건강관리에 대한 관심 증가와 미세먼지로 인한 공기질의 악화, 다양한 토양 및 수질 오염으로 인해 친환경 식재료에 대한 요구가 급증하고 있다. 이와 같은 현상의 해결책으로 아쿠아포닉스가 대두되고 있다. 그러나 최적의 생육 환경을 도출하는 기법이 선행되어야 한다. 본 논문에서는 기존 아쿠아포닉스의 특성을 고려하는 지능형 식물 성장 측정 시스템을 설계하고자 한다. 특히, 지능형 아쿠아포닉스 생산관리 모듈 중 고성능의 처리 자원을 갖지 않는 생산 현장에 적합한 시스템 설계에 주안점을 두고, 균일한 생육환경을 제공하는 경우의 학습 데이터 및 판단 시스템을 위한 모듈 구성 방안을 제안하고자 한다.

Demands for eco-friendly food materials are increasing rapidly because of increased interest in well-being and health care, deterioration of air quality due to fine dust, and various soil and water pollution. Aquaponics is a system that can solve various problems such as economic activities, environmental problems, and safe food provision of the elderly population. However, techniques for deriving the optimal growth environment should be preceded. In this paper, we intend to design an intelligent plant growth measurement system that considers the characteristics of existing aquaponics. In particular, we would like to propose a module configuration plan for learning data and judgment systems when providing a uniform growth environment, focusing on designing systems suitable for production sites that do not have high-performance processing resources among intelligent aquaponics production management modules. It is believed that the proposed system can effectively perform deep learning with small analysis resources.

키워드

과제정보

Following are results of a study on the "Leaders in INdustry-university Cooperation 3.0" Project, supported by the Ministry of Education and National Research Foundation of Korea.

참고문헌

  1. V. Kakani, V. H. Nguyen, B. P. Kumar, H. Kim, and V. R. Pasupuleti, "A critical review on computer vision and artificial intelligence in food industry," Journal of Agriculture and Food Research, vol. 2, Article ID. 100033, Dec. 2020. DOI: 10.1016/j.jafr.2020.100033. 
  2. J. Y. Moon, G. E. Gwon, H. Y. Kim, and J. H. Moon, "Building a Smart Farm in the House using Artificial Intelligence and IoT Technology," in Proceeding of the Korea Information Processing Society, Online, vol. 27, no. 2, pp. 818-821, 2020. DOI: 10.3745/PKIPS.y2020m11a.818. 
  3. Y. C. Kim, M. T. Cho, and H. J. Joo, "A Study on the Development of Plant Growth Monitoring System Using Plant Measurement Algorithms," Journal of the Korea Academia-Industrial cooperation Society, vol. 13, no. 6, pp. 2702-2706, Jun, 2012. DOI: 10.5762/KAIS.2012.13.6.2702. 
  4. A. Rizkiana, A. P. Nugrobo, N. M. Salma, S. Afif, R. E. Masithoh, L. Sutiarso, and T. Okayasu, "Plant growth prediction model for lettuce (Lactuca sativa.) in plant factories using artificial neural network," in Proceeding of IOP Conference Series: Earth and Environmental Science, Malang, Indonesia, vol. 733, pp. 1-9, 2021. DOI: 10.1088/1755-1315/733/1/012027. 
  5. M. Ikeda, N. Ruedeeniraman, and L. Barolli, "An intelligent VegeCareAI tool for next generation plant growth management," Internet of Things, vol. 14, Article ID. 100381, Jun. 2021. DOI: 10.1016/j.iot.2021.100381. 
  6. Kaggle: Data science community [Internet]. Availabe: https://www.kaggle.com. 
  7. D. P. Hughes and M. Salath'e, "An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing," arXiv:1511.08060, 2015. DOI: 10.48550/arXiv.1511.08060. 
  8. D. Shadrin, A. Somov, T. Podladchikova, and R. Gerzer, "Pervasive Agriculture: Measuring and Predicting Plant Growth Using Statistics and 2D/3D Imaging," in Proceeding of International Instrumentation and Measurement Technology Conference, Houston: TX, USA, pp. 1-6, 2018. DOI: 10.1109/I2MTC.2018.8409700. 
  9. S. Nesteruk, D. Shadrin, V. Kovalenko, A. Rodr'iguez-Sanchez, and A. Somov, "Plant Growth Prediction through Intelligent Embedded Sensing," in Proceeding of International Symposium on Industrial Electronics, Delft, Netherlands, pp. 411-416, 2020. DOI: 10.1109/ISIE45063.2020.9152399.