• Title/Summary/Keyword: 아쿠아포닉스

Search Result 19, Processing Time 0.032 seconds

Exploratory Research : Home Aquaponics of Tropical Fish Using IoT (IoT를 활용한 가정용 열대어 아쿠아포닉스에 관한 탐색적 연구)

  • Kim, Gyeong-Hyeon;Han, Dong-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • The aim of this study is to explores the possibility of applying new aquaponics using guppies, a tropical fish breeding as companion fish at home, different from the aquaponics system using fish species such as loach, carp, and catfish for commercial purposes. To facilitate the application of Aquaponics at home, a system was established by connecting a water tank, water plants, hydroponic pots, plant growth LEDs, and Arduino sensors using Internet of Things(IoT) technology. As a hydroponic crops, lettuce that can be easily obtained and consumed at home was selected. In order to confirm the applicability of aquaponics using tropical fish, the growth rates of hydroponic crops in the same environment were compared as a control. The growth rate of aquaponics crops using tropical fish was about 77.4% of that of hydroponic crops. This will produce the same effect as hydroponic cultivation if conditions correspond with enough fish quantity to feed plant and appropriate pH control for growth are met. It can be seen that, and in the future, it can be used to develop an Aquaphonics standard system applicable at home.

A Design of Growth Measurement System Considering the Cultivation Environment of Aquaponics (아쿠아포닉스의 생육 환경을 고려한 성장 측정 시스템의 설계)

  • Hyoun-Sup, Lee;Jin-deog, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Demands for eco-friendly food materials are increasing rapidly because of increased interest in well-being and health care, deterioration of air quality due to fine dust, and various soil and water pollution. Aquaponics is a system that can solve various problems such as economic activities, environmental problems, and safe food provision of the elderly population. However, techniques for deriving the optimal growth environment should be preceded. In this paper, we intend to design an intelligent plant growth measurement system that considers the characteristics of existing aquaponics. In particular, we would like to propose a module configuration plan for learning data and judgment systems when providing a uniform growth environment, focusing on designing systems suitable for production sites that do not have high-performance processing resources among intelligent aquaponics production management modules. It is believed that the proposed system can effectively perform deep learning with small analysis resources.

Smart Growth Measurement System for Aquaponics Production Management (아쿠아포닉스 생산 관리를 위한 지능형 성장 측정 시스템)

  • Lee, Hyounsup;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.357-359
    • /
    • 2022
  • The market for eco-friendly food materials by online distribution is rapidly growing due to major environmental pollution such as air, soil, and water quality, and radical changes in living patterns caused by COVID-19. In addition, because of the aging population and the decrease in agricultural-related population due to social structural changes, aquaponics is emerging as a system that can solve problems such as independence of old economic activities, environmental protection, and securing healthy and safe food. This paper aims to design an intelligent plant growth measurement system among intelligent aquaponics production management modules for optimal growth environment derivation and quantitative production prediction by converging various ICT technologies into existing aquaponics systems. In particular, the focus is on designing systems suitable for production sites that do not have high-performance processing resources, and we propose a module configuration plan for production environments and training data and prediction systems.

  • PDF

A Study on the AI Analysis of Crop Area Data in Aquaponics (아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구)

  • Eun-Young Choi;Hyoun-Sup Lee;Joo Hyoung Cha;Lim-Gun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.861-866
    • /
    • 2023
  • Unlike conventional smart farms that require chemical fertilizers and large spaces, aquaponics farming, which utilizes the symbiotic relationship between aquatic organisms and crops to grow crops even in abnormal environments such as environmental pollution and climate change, is being actively researched. Different crops require different environments and nutrients for growth, so it is necessary to configure the ratio of aquatic organisms optimized for crop growth. This study proposes a method to measure the degree of growth based on area and volume using image processing techniques in an aquaponics environment. Tilapia, carp, catfish, and lettuce crops, which are aquatic organisms that produce organic matter through excrement, were tested in an aquaponics environment. Through 2D and 3D image analysis of lettuce and real-time data analysis, the growth degree was evaluated using the area and volume information of lettuce. The results of the experiment proved that it is possible to manage cultivation by utilizing the area and volume information of lettuce. It is expected that it will be possible to provide production prediction services to farmers by utilizing aquatic life and growth information. It will also be a starting point for solving problems in the changing agricultural environment.

Implementing an AutoFarm System using IoT Technology (IoT 기술을 활용한 오토팜 시스템 구현)

  • Cha, Eun-Young;Kim, So-Min;Sim, Su-Min;Lee, Gyeong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1320-1323
    • /
    • 2021
  • 최근 미래형 농업으로 주목받고 있는 '아쿠아포닉스(Aquaponics)'는 물고기 양어 기술(Aquaculture)과 수경 농법(Hydroponic)을 융합한 친환경적인 순환형 생산 시스템이다. 하지만 양식 환경과 수경재배환경이 서로 성장하는 데에 영향을 주기 때문에 농업인이나 일반인이 사용하기에 난도가 높고, 초기 투자비가 많이 든다는 점에서 국내 도입에 대한 문제점이 제기되고 있다.[1] 본 논문에서는 IoT 기술을 이용해 아쿠아포닉스의 단점을 보완할 기술적 대안과 국내 도입 문제 해결방안으로서 오토팜(AutoFarm) 시스템을 제안한다.

A Design and Implementation on the Home Aquaponics System Using the IOT (사물 인터넷을 활용한 가정용 아쿠아포닉스 시스템 설계 및 구현)

  • Hyuk-Jin Kwon;Do-Kyun Kim;Eo-Jin Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.792-793
    • /
    • 2023
  • 본 연구는 최근 농촌 인구 및 농촌 물 부족으로 인해 대량 재배가 어려워 짐으로서, 물고기 양식과 수경 재배를 동시에 할 수 있는 시스템이 도입되고 있다. 수경재배 작물과 가정에서도 쉽게 구할 수 있는 물고기로 선정하여 연구를 진행하였다. 향후 이를 활용하여 가정에서도 쉽게 수경재배를 할 수 있는 이른바 "아쿠아포닉스" 시스템에 관한 연구이다.

Development of Sustainable Anti-aging Products Using Aquaponics Technology (아쿠아포닉스 기술을 이용한 친환경 항노화 제품 개발)

  • Kim, You Ah;Jeon, Tae Byeong;Jang, Wookju;Park, Byoung Jun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.307-317
    • /
    • 2019
  • To develop sustainable new natural anti-aging ingredients from Korean native plants, we investigated the cultivation potential of Nymphoides indica using the eco-friendly aquaponics system, and tested the anti-aging effects from N. indica extracts. N. indica could be grown in aquaponics system using floating leaved deep water culture method, and propagated through rhizome propagation. It was confirmed that the nitrate ($80{\mu}g/mL$), potassium ($63.5{\mu}g/mL$) and water temperature ($25^{\circ}C$) greatly affected the cultivation of the N. indica. In addition, synergistic effects were found when two major components (3,7-di-O-methylquercetin-4'-O-${\beta}$-glucoside & sweroside) were present at more than about $5{\mu}g/mL$. The extract had a significant effect on the recovery of skin cells damaged by environmental pollutant such as $benzo[{\alpha}]pyrene$, ammonium nitrate, formaldehyde. It also suppressed $PGE_2$, $TNF-{\alpha}$ and COX-2, and inhibited the production of MMP-1. Taken together, the results suggested that the standardized extracts of N. indica cultivated in the aquaponics has considerable potential as a new cosmetics ingredient with an anti-aging effect.

Urban aquaculture of catfish, Silurus asotus, using biofloc and aquaponics systems (바이오플락과 아쿠아포닉스를 이용한 도심형 양식시스템에서의 메기양식)

  • Kim, Seok Ryel;Jang, Jin Woo;Kim, Bum Ju;Jang, In Kwon;Lim, Hyun Jeong;Kim, Su Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.545-553
    • /
    • 2019
  • This study was conducted to determine whether the water in which nitrate accumulated during long-term fish culture in an aquaponics system without water exchange could be removed and reused as catfish-culturing water. The catfish (Silurus asotus) were cultured in the urban aquaculture system using BFT (Biofloc Technology) aquaculture and an aquaponics system (two rearing tanks, 3 tons each) without exchanging the rearing water. After 151 days (from March to August) of rearing, 2.8 g of fry had grown to an average weight of 171.3 g (total weight, 56.53 kg) and 235.5 g (total weight 71.1 kg), respectively. The overall survival rate was 65% in the urban aquaculture system. However, the survival rate was 77.7% before separation into the two tanks. The survival rates after the separation were 92.9% and 78.0%. In the early biofloc watermaking process, there was a high mortality rate. After water stabilization, the mortality rate decreased and some mortality occurred during the period when the total amount of suspended solids (TSS) increased. The results of monthly blood analysis of the catfish showed that the AST concentration was significantly higher in April. Blood ALT levels and triglycerides showed no difference in the rearing period and the glucose, cholesterol, and total protein levels were significantly higher in July. There was no difference in the other periods. The plants produced by the aquaponics system using catfish-rearing water were lettuce, basil, chard, and red chicory. These showed smooth growth and a total of 148.85 kg of plants were harvested in five months. It was possible to remove nitric acid from the aquaponics system and reuse it as catfish-rearing water. Maintaining proper plant quantity according to the capacity of the catfish showed that the combination of agricultural and aquatic products was possible.

Measuring the Degree of Crop Growth through Image Analysis (영상 분석을 통한 작물의 생육 정도 측정)

  • Heo, Gyeongyong;Choi, Eun Young;Kim, Ji Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.657-659
    • /
    • 2022
  • Hydroponics and aquaponics are attracting attention as they enable automated farm management and stable production thanks to the spread of smart farms. There are issues that need to be addressed in applying smart farm, but one of them is to be able to respond flexibly to demand by automatically deciding when to ship, which requires a method for automatically determining the growth level of crops. In this paper, we focused on the simple fact that the area and volume occupied by crops increase with the growth of them, and showed that it is possible to monitor the growth process of crops with 2D and 3D cameras, and to determine the degree of growth of crops by calculating the area and volume. It is necessary to verify the method by applying it to various environments and crops, but in the case of common crops in hydroponics and aquaponics, it is possible to determine the growth level through the analysis of the acquired image through 2D and 3D camera.

  • PDF