DOI QR코드

DOI QR Code

염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration

  • 강윤석 (고려대학교 환경공학과) ;
  • 임귀환 ((재)한국건설생활환경시험연구원) ;
  • 박병선 (고려대학교 환경공학과)
  • Yunsuk Kang (Department of Environmental Engineering, Korea University) ;
  • Gwihwan Lim (Korea Conformity Laboratories) ;
  • Byoungsun Park (Department of Environmental Engineering, Korea University)
  • 투고 : 2023.10.23
  • 심사 : 2023.11.01
  • 발행 : 2023.12.30

초록

본 연구에서는 염해를 받은 콘크리트의 역학적 성능 평가를 수행하고, 실험 결과를 바탕으로 염소이온 농도에 따른 압축응력변형률 모델을 제시하였다. 염해를 모사하기 위해 콘크리트 배합 시 CaCl2 용액을 첨가하였으며, 염소이온의 농도는 결합재의 중량 대비 0, 1, 2, 4 %가 되도록 하였다. 콘크리트의 최대 압축응력 이후의 응력-변형률 곡선을 조사하기 위해 변위 제어를 통해 압축강도를 측정하였다. 염소이온 농도가 1 %인 경우에는 최대 압축응력이 증가하였으나, 염소이온 농도가 2 % 이상인 경우에는 최대 압축응력이 감소하였다. 최대 압축응력에서의 변형률의 경우 재령 7일의 시편에서는 염소이온 농도에 따른 경향이 나타나지 않았다. 재령 28일의 시편에서는 염소이온 농도가 증가함에 따라 감소하였다. 재령 28일의 최대 압축응력와 변형률의 변화를 이용하여 Popovics model에 기반한 응력-변형률 곡선 모델을 제시하였다. 염소이온의 농도 증가에 따른 역학적 성능 저하의 원인을 조사하기 위해 수화생성물 분석을 수행하였다. 염소이온의 농도가 증가함에 따라 Friedel's salt가 증가하고, portlandite가 감소하는 것을 확인하였다.

In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

키워드

과제정보

이 연구는 과학기술정보통신부의 재원으로 사용후핵연료관리 핵심기술개발사업단 및 한국연구재단의 지원을 받아 수행된 연구입니다(NO. 2021M2E1A1085229). 이에 감사드립니다.

참고문헌

  1. ACI Committee 365. (2017). ACI 365.1R-17,American Concrete Institute.
  2. Bachtiar, E., Rachim, F., Makbul, R., Tata, A., Irfan-Ul-Hassan, M., Kirgiz, M.S., Syarif, M., de Sousa Galdino, A.G., Khitab, A ., Benjeddou, O., Kolovos, K.G., Ledesma, E.F., Yusri, A., Papatzani, S. (2022). Monitoring of chloride and Friedel's salt, hydration components, and porosity in high-performance concrete, Case Studies in Construction Materials, 17, e01208.
  3. Chen, Q., Ma, R., Li, H., Jiang, Z., Zhu, H., Yan, Z. (2021). Effect of chloride attack on the bonded concrete system repaired by UHPC, Construction and Building Materials, 272, 121971.
  4. Duan, P., Shui, Z., Chen, W., Shen, C. (2013). Efficiency of mineral admixtures in concrete: microstructure, compressive strength and stability of hydrate phases, Applied Clay Science, 83, 115-121. https://doi.org/10.1016/j.clay.2013.08.021
  5. Fan, W.J., Wang, X.Y. (2015). Prediction of chloride penetration into hardening concrete, Advances in Building Technologies and Construction Materials, 2015, 616980.
  6. Koleva, D.A., Hu, J., Fraaij, A.L.A., Stroeven, P., Boshkov, N., De Wit, J.H.W. (2006). Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack. Corrosion Science, 48(12), 4001-4019. https://doi.org/10.1016/j.corsci.2006.03.003
  7. Korean Standards & Certification. (2016). Standard Test Method for Air Content of Fresh Concrete by the Pressure Method(Air Receiver method), Korea.
  8. Korean Standards & Certification. (2021). Standard Test Method for Tensile Splitting Strength of Concrete, Korea.
  9. Korean Standards & Certification. (2022). Aggregates for Concrete, Korea.
  10. Korean Standards & Certification. (2022). Test Method for Concrete Slump, Korea.
  11. Li, D., Li, L.Y., Wang, X. (2019). Chloride diffusion model for concrete in marine environment with considering binding effect, Marine Structures, 66, 44-51. https://doi.org/10.1016/j.marstruc.2019.03.004
  12. Li, Y., Gao, Y., Zheng, X., Wang, F. (2021). Pore structure and compressive strength of tailings concrete under dry-wet cycles of chloride attack, Journal of Performance of Constructed Facilities, 35(5), 04021048.
  13. Mehta, P.K., Monteiro, P.J. (2014). Concrete: Microstructure, Properties, and Materials, 4th Edition, McGraw-Hill Education, ISBN 9780071797870.
  14. Moon, J.G., Her, S.W., Cho, S.M., Bae, S.C. (2022), Experimental evaluation of hydrate formation and mechanical properties of limestone calcined clay cement (LC3) according to calcination temperature of low-quality kaolin clay in Korea, Journal of the Korean Recycled Construction Resources Institute, 10(3), 252-260 [in Korean].
  15. Nie, L., Xu, J., Bai, E. (2018). Dynamic stress-strain relationship of concrete subjected to chloride and sulfate attack, Construction and Building Materials, 165, 232-240. https://doi.org/10.1016/j.conbuildmat.2018.01.044
  16. Park, J.S., Yoon, Y.S., Kwon, S.J. (2017). Strength and resistance to chloride penetration in concrete containing GGBFS with ages, Journal of the Korea Concrete Institute, 29(3), 307-314 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.3.307
  17. Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete, Cement and Concrete Research, 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  18. Real, S., Bogas, J.A. (2018). Chloride ingress into structural lightweight aggregate concrete in real marine environment, Marine Structures, 61, 170-187. https://doi.org/10.1016/j.marstruc.2018.05.008
  19. Shi, Z., Geiker, M.R., Lothenbach, B., De Weerdt, K., Garzon, S.F., Enemark-Rasmussen, K., Skibsted, J. (2017). Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution, Cement and Concrete Composites, 78, 73-83. https://doi.org/10.1016/j.cemconcomp.2017.01.002
  20. Siemes, A.J.M., Edvardsen, C. (1999). Duracrete: service life design for concrete structures, Durability of Building Materials and Components, 8.
  21. Sun, H., Liu, S., Cao, K., Yu, D., Memon, S.A., Liu, W., Zhang, X., Xing, F., Zhao, D. (2021). Degradation mechanism of cement mortar exposed to combined sulfate-chloride attack under cyclic wetting-drying condition. Materials and Structures, 54(4), 138.
  22. Svensson, K., Neumann, A., Feitosa Menezes, F., Lempp, C., Pollmann, H. (2019). Carbonation of natural wollastonite at non-ambient conditions relevant for CCS-the possible use as cementitious material in wellbores, Applied Sciences, 9(6), 1259.
  23. Verma, S.K., Bhadauria, S.S., Akhtar, S. (2013). Evaluating effect of chloride attack and concrete cover on the probability of corrosion, Frontiers of Structural and Civil Engineering, 7, 379-390. https://doi.org/10.1007/s11709-013-0223-9
  24. Xu, L., Wu, P., Zhu, X., Zhao, G., Ren, X., Wei, Q., Xie, L. (2022). Structural characteristics and chloride intrusion mechanism of passive film, Corrosion Science, 207, 110563.