DOI QR코드

DOI QR Code

혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 제조한 활성탄의 흡착 특성 조사

Investigation of the Adsorption Properties of Activated Carbon Made by Chemical Activation of Mixed Waste Plastic Pyrolysis Residues

  • 문은진 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 강윤석 (고려대학교 환경공학과) ;
  • 박병선 (고려대학교 환경공학과)
  • Eun-Jin Moon (Korea Conformity Laboratories) ;
  • Yunsuk Kang (Department of Environmental Engineering, Korea University) ;
  • Byoungsun Park (Department of Environmental Engineering, Korea University)
  • 투고 : 2023.10.29
  • 심사 : 2023.11.02
  • 발행 : 2023.12.30

초록

최근 증가하는 폐플라스틱의 재활용 방법으로 저온 열분해 기술이 연구되고 있다. 폐플라스틱 저온 열분해 기술은 에너지 자원으로 활용할 수 있는 열분해유를 생산하지만, 고체의 잔류물이 발생한다. 폐플라스틱 열분해 잔류물은 활용 범위가 낮아 대부분 매립 처리하고 있다. 본 연구에서는 혼합 폐플라스틱 열분해 잔류물를 활성탄으로 재활용하기 위한 연구를 수행하였다. 혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 활성탄을 제조하고, 그 특성에 대해 조사하였다. 공업분석을 통해 잔류물의 고정탄소량이 33.69 %인 것으로 확인하였다. 활성탄 제조에는 화학적 활성화를 활용하였으며. 활성화제로 KOH를 사용하였다. KOH와 잔류물의 혼합비율의 영향을 조사하기 위해 0.5, 1.0, 2.0의 비율로 시료를 혼합하였다. 혼합한 시료는 활성화 온도는 800 ℃에서 1시간 동안 화학적 활성화를 진행하였다. BET를 통한 활성탄 특성 분석 결과 KOH의 혼합비율이 증가할수록 비표면적이 증가하는 것을 확인하였다.

Recently, low-temperature pyrolysis technology has been studied as a recycling method for waste plastic. Low-temperature pyrolysis technology for waste plastic produces pyrolysis oil that can be used as an energy resource, but solid residue remains. Waste plastic pyrolysis residues are mostly landfilled due to their limited use. In this study, it is investigated that mixed waste plastic pyrolysis residues could be recycled into activated carbon. It was confirmed that the fixed carbon content of the residue was 33.69 % from proximate Analysis. Chemical activation was used to manufacture activated carbon. KOH was used as an activator. To investigate the effect of the mixing ratio of KOH and residue, samples were mixed at ratios of 0.5, 1.0, and 2.0. The mixed sample was chemically activated at an activation temperature of 800 ℃ for 1 hour. As a result of analyzing the characteristics of activated carbon through BET, it was confirmed that the specific surface area increased as the mixing ratio of KOH increased.

키워드

과제정보

본 연구는 환경부의 재원으로 한국환경산업기술원의 폐플라스틱 활용 원료 연료화 기술개발사업의 지원을 받아 수행되었습니다.(2022003490004, 폐플라스틱 연속식 열분해 공정 기반 윤활기유 생산 기술 개발) 또한, 본 연구는 한국에너지기술평가원의 지원을 받아 수행되었습니다.(과제번호 20212010200080)

참고문헌

  1. Greenpeace East Asia Seoul Office. (2023). Plastics Korea 2.0 Report.
  2. Che, H.J., Lee, S.C., Park, N., Kim, S.J., Kim, T.Y., Kim, T. (2019). Recyclability evaluation by characteristic analysis of waste plastic pyrolysis liquefaction process for oil production, Journal of Energy & Climate Change, 14(2), 125-136.
  3. Cho, J.H., Kang, S.K., Kang, M.K., Cho, K., Oh, K.J. (2017). Characteristics on chemical activation and VOCs adsorption of activated carbon according to mixing ratio of anthracite and lignite, Clean Technology, 23(4), 364-377 [in Korean]. https://doi.org/10.7464/KSCT.2017.23.4.364
  4. Cho, Y.J., Cho, B.G. (2020). Status and future prospects for plastics recycling, Resources Recycling, 29(4), 31-44 [in Korean]. https://doi.org/10.7844/kirr.2020.29.4.31
  5. Huang, W.C., Huang M.S., Huang, C.F., Chen, C.C., Ou, K.L. (2010). Thermochemical conversion of polymer waste into hydrocarbon fuel over various fluidizing cracking catalysts, Fuel, 89(9), 2305-2316. https://doi.org/10.1016/j.fuel.2010.04.013
  6. Kim, S.C., Hong, I.K. (1998). Manufacturing and physical properties of coal based activated carbon, Journal of Korean Society of Environmental Engineers, 20(5), 745-754 [in Korean].
  7. Kunwar, B., Cheng, H.N., Chandrashekaran, S.R., Sharma, B.K. (2016). Plastic to fuel: a review, Renewable and Sustainable Energy Reviews, 54, 421-428. https://doi.org/10.1016/j.rser.2015.10.015
  8. Ligero, A., Calero, M., Perez, A., Solis, R.R., Munoz-Batista, M.J., Martin-Lara, M.A. (2023). Low-cost activated carbon from the pyrolysis of post-consumer plastic waste and the application in CO2 capture, Process Safety and Environmental Protection, 173, 558-566. https://doi.org/10.1016/j.psep.2023.03.041
  9. Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail, I.M.I., Murphy, J.D. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil, Waste Management, 58, 250-259. https://doi.org/10.1016/j.wasman.2016.09.023
  10. Ramdoss, P.K., Tarrer, A.R. (1998). High-temperature liquefaction of waste plastic, Fuel, 77(4), 293-299. https://doi.org/10.1016/S0016-2361(97)00193-2
  11. Shin, D.H., Yoon, W.L., Choi, I.S. (2022). Chemical recycling of plastic waste and pyrolysis technologies for oil production, Polymer Science and Technology, 13(3), 322-331.
  12. Williams, P.T., Slaney, E. (2007). Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures, Resources, Conservation and Recycling, 51(4), 754-769. https://doi.org/10.1016/j.resconrec.2006.12.002
  13. Yang, H.S., Hyun, J.H., Lim, C.W., Kim, K.K. (2019). Oil Quality and By-product Yield Characteristics Based on Pre-treatment of Waste Plastics in Pyrolysis Process, Journal of Korea Society of Waste Management, 36(4), 354-360 [in Korean]. https://doi.org/10.9786/kswm.2019.36.4.354
  14. Yang, X., Sun, L., Xiang, J., Hu, S., Su, S. (2013), Pyrolysis and dehalogenation of plastics from electrical and electronic equipment (WEEE): a review, Waste Management, 33(2), 462-473. https://doi.org/10.1016/j.wasman.2012.07.025