DOI QR코드

DOI QR Code

복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features

  • 박희경 (인천대학교 일반대학원 안전공학과) ;
  • 이민철 (인천대학교 안전공학과)
  • HEEKYUNG PARK (Department of Safety Engineering, Incheon National University Graduate School) ;
  • MINCHUL LEE (Department of Safety Engineering, Incheon National University)
  • 투고 : 2023.10.04
  • 심사 : 2023.11.03
  • 발행 : 2023.12.30

초록

Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(No. 00236869, 300 MW급[H급] 가스터빈 50% 수소 혼소 변환 기술 개발 및 실증).

참고문헌

  1. Y. Joo, M. Kim, J. Park, S. Park, and J. Shin, "Hydrogen enriched gas turbine: core technologies and R&D trend", Journal of Hydrogen and New Energy, Vol. 31, No. 4, 2020, pp. 351-362, doi: https://doi.org/10.7316/KHNES.2020.31.4.351.
  2. A. Ursua, L. M. Gandia, and P. Sanchis, "Hydrogen production from water electrolysis: current status and future trends", Proceedings of the IEEE, Vol. 100, No. 2, 2012, pp. 410-426, doi: https://doi.org/10.1109/JPROC.2011.2156750.
  3. Ministry of Trade, Industry and Energy (MOTIE), "The 1st hydrogen economy implementation plan", MOTIE, 2021. Retrieved from https://www.motie.go.kr/motie/ms/nt/announce2/bbs/bbsView.do?bbs_seq_n=67130&bbs_cd_n=6.
  4. Y. Hames, K. Kaya, E. Baltacioglu, and A. Turksoy, "Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles", International Journal of Hydrogen Energy, Vol. 43, No. 23, 2018, pp. 10810-10821, doi: https://doi.org/10.1016/j.ijhydene.2017.12.150.
  5. Y. Manoharan, S. E. Hosseini, B. Butler, H. Alzhahrani, B. T. F. Senior, T. Ashuri, and J. Krohn, "Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect", Applied Sciences, Vol. 9, No. 11, 2019, pp. 2296, 2019, doi: https://doi.org/10.3390/app9112296.
  6. G. Romeo, F. Borello, G. Correa, and E. Cestino, "ENFICAFC: design of transport aircraft powered by fuel cell & flight test of zero emission 2-seater aircraft powered by fuel cells fueled by hydrogen", International Journal of Hydrogen Energy, Vol. 38, No. 1, 2013, pp. 469-479, doi: https://doi.org/10.1016/j.ijhydene.2012.09.064.
  7. S. H. Park, C. Park, S. Lee, and C. Kim, "A study on the combustion characteristics of a generator engine running on a mixture of syngas and hydrogen", Transactions of the Korean Society of Mechanical Engineers B, Vol. 35, No. 7, 2011, pp. 693-699, doi: https://doi.org/10.3795/KSME-B.2011.35.7.693.
  8. M. Hussain, A. Abdelhafez, M. A. Nemitallah, A. A. Araoye, R. Ben-Mansour, and M. A. Habib, "A highly diluted oxyfuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines", Applied Energy, Vol. 279, 2020, pp. 115818, doi: https://doi.org/10.1016/j.apenergy.2020.115818.
  9. W. H. Cho, H. S. Yi, S. J Lee, and E. S. Kim, "A study on the in-cylinder injection type hydrogen fueled S. I. engine", Transactions of the Korean Society of Mechanical Engineers, Vol. 19, No. 7, 1995, pp. 1702-1708. Retrieved from https://www.osti.gov/etdeweb/biblio/378479. https://doi.org/10.22634/KSME.1995.19.7.1702
  10. Korean Electic Power Research Institute (KEPRI), "2050 carbon neutral strategic technology-fuel transition", KEPRI News, Vol. 302, 2022. Retrieved from https://www.keei.re.kr/web_keei/d_results.nsf/0/ECA152A4463C693F4925884800196265/$file/ef2203.pdf.
  11. A. Hernandez, "5 hurdles facing Europe's hydrogen plans: Building a hydrogen economy is going to be a long and dirty process", Politico, 2020. Retrieved from https://www.politico.eu/article/5-hurdles-facing-europes-hydrogen-plans/?utm_source=rss_feed&utm_medium=rss&utm_campaign=rss_syndication.
  12. Federal Ministry for Economic Affairs and Energy (FMEAE), "The national hydrogen strategy", FMEAE, 2020. Retrieved from https://www.bmbf.de/bmbf/shareddocs/downloads/files/bmwi_nationale-wasserstoffstrategie_eng_s01.pdf?__blob=publicationFile&v=2.
  13. European Commission (EC), "A hydrogen strategy for a climate-neutral Europe ", EC, 2020. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301.
  14. Ministry of Economy, Trade and Industry (METI), "Japan: basic hydrogen strategy", METI, 2017. Retrieved from https://policy.asiapacificenergy.org/node/3698.
  15. Committee on Climate Change (CCC), "Hydrogen in a low-carbon economy", CCC, 2018. Retrieved from https://www.theccc.org.uk/publication/hydrogen-in-a-low-carbon-economy/.
  16. S. Bruce, M. Temminghoff, J. Hayward, E. Schmidt, C. Munnings, D. Palfreyman, and P. Hartley, "National hydrogen roadmap: an economically sustainable hydrogen industry in Australia", Commonwealth Scientific and Industrial Research Organisation, 2018. Retrieved from https://www.csiro.au/en/work-with-us/services/consultancy-strategic-advice-services/csiro-futures/energy-and-resources/national-hydrogen-roadmap.
  17. N. Tekin, M. Ashikaga, A. Horikawa, and H. Funke, "Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems", Gas for Energy, No. 2, 2018. Retrieved from https://www.kawasaki-gasturbine.de/files/Hydrogen_as_fuel_for_GT.pdf.
  18. D. S. Kim, "Review on the development trend of hydrogen gas turbine combustion technology", Journal of The Korean Society of Combustion, Vol. 24, No. 4, pp. 1-10, 2019, doi: https://doi.org/10.15231/jksc.2019.24.4.001.
  19. H. L. Yip, A. Srna, A. C. Y. Yuen, S. Kook, R. A. Taylor, G. H. Yeoh, P. R. Medwell, and Q. N. Chan, "A review of hydrogen direct injection for internal combustion engines: towards carbon-free combustion", Applied Sciences, Vol. 9, No. 22, 2019, pp. 4842, doi: https://doi.org/10.3390/app9224842.
  20. Y. Shin and E. S. Cho, "Numerical study on H2 enriched NG lean premixed combustion", Journal of The Korean Society of Combustion, Vol. 26, No. 1, 2021, pp. 51-58, doi: https://doi.org/10.15231/jksc.2021.26.1.051.
  21. R. C. West, M. J. Astle, W. H. Beyer, "CRC handbook of chemistry and physics," 64th ed, CRC Press, USA, 1985.
  22. D. J. Jang, S. Y. Kim, and M. C. Lee, "Property based quantitative risk assessment of hydrogen compared with methane, ethane, propane and butane", Transactions of the Korean Society of Mechanical Engineers B, Vol. 46, No. 2, 2022, pp. 109-114, doi: https://doi.org/10.3795/KSME-B.2022.46.2.103.
  23. S. Y. Jeong, D. Jang, and M. C. Lee, "Property-based quantitative risk assessment of hydrogen, ammonia, methane, and propane considering explosion, combustion, toxicity, and environmental impacts", Journal of Energy Storage, Vol. 54, 2022, pp. 105344, doi: https://doi.org/10.1016/j.est.2022.105344.
  24. J. W. Lee and C. S. Kim, "A study on the risk assessment for strengthening management safety of hydrogen fueling station", Journal of the Society of Disaster Information, Vol. 18, No. 3, 2022, pp. 520-531, doi: https://doi.org/10.15683/kosdi.2022.9.30.520.
  25. N. Khakzad, F. Khan, P. Amyotte, and Valerio Cozzani, "Risk management of domino effects considering dynamic consequence analysis", Risk Analysis, Vol. 34, No. 6, 2014, pp. 1128-1138, doi: https://doi.org/10.1111/risa.12158.
  26. M. S. Yarandi, M. Mahdinia, J. Barazandeh, and A. Soltanzadeh, "Evaluation of the toxic effects of ammonia dispersion: consequence analysis of ammonia leakage in an industrial slaughterhouse", Medical Gas Research, Vol. 11, No. 1, 2021, pp. 24-29, doi: https://doi.org/10.4103/2045-9912.310056.
  27. N. S. Anjana, M. V H. Nair, K. S. Sajith, A. Amarnath, and I. Indu, "Accidental release of ammonia from a storage tank and the effects of atmosphere on the affected area using ALOHA", Indian journal of scientific research, Vol. 21, No. 1, 2018, pp. 1-7, 2018. Retrieved from https://api.semanticscholar.org/CorpusID:198418759.
  28. H. E. Lee, J. R. Sohn, S. H. Byeon, S. J. Yoon, and K. W. Moon, "Alternative risk assessment for dangerous chemicals in South Korea regulation: comparing three modeling programs", International Journal of Environmental Research and Public Health, Vol. 15, No. 8, 2018, pp. 1600, doi: https://doi.org/10.3390/ijerph15081600.
  29. R. Jones, W. Lehr, D. Simecek-Beatty, and R. M. Reynolds, "ALOHA® (areal locations of hazardous atmospheres) 5.4. 4: technical documentation", National Oceanic and Atmospheric Administration, 2013. Retrieved from https://response.restoration.noaa.gov/sites/default/files/ALOHA_Tech_Doc.pdf.
  30. R. M. Reynolds, "ALOHATM (areal locations of hazardous atmospheres) 5.0: theoretical description", National Oceanic and Atmospheric Administration, 1992. Retrieved from http://calliope.dem.uniud.it/CLASS/ENV-TRANSP/ALOHA_Theoretical_Description.pdf.
  31. P. Patel and N. Sohani, "Hazard evaluation using ALOHA tool in storage area of an oil refinery", International Journal of Research in Engineering and Technology, Vol. 4, No. 12, 2015, pp. 204-209. Retrieved from https://ijret.org/volumes/2015v04/i12/IJRET20150412040.pdf. https://doi.org/10.15623/ijret.2015.0412040
  32. J. A. Havens and T. O. Spicer, "Development of an atmospheric dispersion model for heavier-than-air gas mixtures", U. S. Department of Transportation, 1985. Retrieved from https://apps.dtic.mil/sti/citations/ADA171522.
  33. T. E. Son and E. J. Lee, "Dispersion model of initial consequence analysis for instantaneous chemical release", Journal of the Korean Society of Safety, Vol. 37, No. 2, 2022, pp. 1-9, doi: https://doi.org/10.14346/JKOSOS.2022.37.2.1.
  34. Korea Occupational Safety & Health Agency (KOSHA), "Technical guidelines for selection of worst and alternative accident scenarios (P-107-2020)", KOSHA, 2020. Retrieved from https://kosha.or.kr/kosha/data/guidanceP.do.
  35. EPA(Environmental protection administration) & NOAA (National Oceanic and atmospheric Administration), "ALOHA User's manual", Seattle, Washington, 1999. Retrieved from https://response.restoration.noaa.gov/.
  36. D. C. Thoman, K. R. O'Kula, J. C. Laul, M. W. Davis, and K. D. Knecht, "Comparison of ALOHA and EPIcode for safety analysis applications", Journal of Chemical Health & Safety, Vol. 13, No. 6, 2006, pp. 20-33, doi: https://doi.org/10.1016/j.jchas.2006.02.003.
  37. W. Brutsaert, "Evaporation into the atmosphere: theory, history, and applications", Springer, USA, 1982, doi: https://doi.org/10.1007/978-94-017-1497-6.
  38. Korea Meteorological Administration (KMA), "2020 annual climatological report", KMA, 2020. Retrieved from https://www.kma.go.kr/download_01/yearbook_2020.pdf.
  39. Korea Testing & Research Institute (KTR), "Technical guidelines for the selection of accident scenarios", KTR, 2021. Retrieved from http://reach.ktr.or.kr/gnu/bbs/board.php?bo_table=law&wr_id=582.
  40. F. Pasquill, "The estimation of the dispersion of windborne material", The Meteorology Magazine, Vol. 90, No. 1063, 1961, pp. 33-61. Retrieved from https://archive.org/details/sim_meteorological-magazine_1961-02_90_1063/page/n1/mode/2up. 1063/page/n1/mode/2up
  41. Korea Gas Safety Corporation (KGS), " 2021 gas accident yearbook", KGS, 2021. Retrieved from https://www.kgs.or.kr/kgs/abca/board.do.
  42. C. G. L. Salcedo, L. Whitehead, J. L. Perkins, S. Upegui-Rincon, J. Guarguati-Ariza, R. Quinchia, and C. J. Espinosa-Guerra, "Management of acute exposure to toxic gases in the oil & gas industry -a practical approach", Archives of Environmental & Occupational Health, Vol. 76, No. 7, 2021, pp. 385-392, doi: https://doi.org/10.1080/19338244.2020.1860875.
  43. Technica, Ltd., "Techniques for assessing industrial hazards: a manual", World Bank Technical Paper, No. 55, 1988. Retrieved from https://documents1.worldbank.org/curated/en/557481468740681645/pdf/multi0page.pdf.
  44. Department of Energy (DOE), " Protective action criteria (PAC) rev. 29a based on applicable 60-minute AEGLs, ERPGs, or TEELs (chemicals listed by CASRN)", DOE, 2016, pp. 1-186. Retrieved from https://edms3.energy.gov/pac/docs/Revision_29A_Table3.pdf.
  45. W. Hwang, "A study on the prediction of damage ranges by leakages of seaport-stored substances", Journal of the Korean Society of Hazard Mitigation, Vol. 21, No. 2, 2021, pp. 23-31, doi: https://doi.org/10.9798/KOSHAM.2021.21.2.23.
  46. Y. C. Shin, H. S. Yeo, S. Y. Park, D. H. Choi, and K. W. Park, "Estimation of radiation heat flux in open pool flames for application of fire protection walls", Fire Science and Engineering, Vol. 36, No. 6, 2022, pp. 22-38, doi: https://doi.org/10.7731/KIFSE.921a0c62.