DOI QR코드

DOI QR Code

고압수소 밸브의 시동 특성에 관한 수치적 연구

A Numerical Study on the Opening Characteristics of High Pressure Hydrogen Valves

  • 김상민 ((주)현대케피코 R&D사업부) ;
  • 김진성 ((주)현대케피코 R&D사업부) ;
  • 조영준 ((주)현대케피코 R&D사업부) ;
  • 양시원 ((주)현대케피코 R&D사업부) ;
  • 신문성 ((주)현대케피코 R&D사업부)
  • SANGMIN KIM (Division of Research and Development, HYUNDAI KEFICO Corporation) ;
  • JINSUNG KIM (Division of Research and Development, HYUNDAI KEFICO Corporation) ;
  • YOUNGJUN CHO (Division of Research and Development, HYUNDAI KEFICO Corporation) ;
  • SIWON YANG (Division of Research and Development, HYUNDAI KEFICO Corporation) ;
  • MOONSUNG SHIN (Division of Research and Development, HYUNDAI KEFICO Corporation)
  • 투고 : 2023.09.25
  • 심사 : 2023.12.13
  • 발행 : 2023.12.30

초록

The high-pressure hydrogen valve is intended to supply hydrogen charged at high pressure in the hydrogen tank to the fuel cell stack, which decompresses high-pressure hydrogen gas to low pressure and primarily limits the excessive flow. It consists of a pilot valve, a main valve, and a excessive flow valve to operate in a wide pressure range from 2 to 70 MPa of charging pressure. The opening characteristics of the valve were confirmed by computation fluid dynamics applying the moving grid technique. The behavior of the valve was predicted by predicting the force acting on the valve over time. In addition, the difference in behavior according to supply pressure was compared.

키워드

참고문헌

  1. J. H. Kim, G. S. Son, S. Chang, S. H. Park, C. H. Won, D. J. Min, C. O. Hong, H. D. Lee, and J. L. Kwon, "Development of a fuel processing system for fuel cell vehicle", KSAE 2012 Annual Spring Conference, Vol. 2012, No. 5, 2012, pp. 1631-1634. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01976553.
  2. D. W. Jung, J. Choi, and H. K. Suh, "Analysis of thermal flow characteristics according to the opening ratio of high-pressure valve for hydrogen storage tank", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 525-533, doi: https://doi.org/10.7316/KHNES.2022.33.5.525.
  3. S. J. Oh, J. H. Yoon, S. P. Kim, and J. Choi, "A numerical study on the flame arrestor for safety valve of hydrogen", Journal of Hydrogen and New Energy, Vol. 33, No. 4, 2022, pp. 391-399, doi: https://doi.org/10.7316/KHNES.2022.33.4.391.
  4. H. L. Kang, H. J. Park, and S. H. Han, "Investigation of the flow characteristics for cylinder-in-ball valve due to a change in the opening rate", Applied Sciences, Vol. 12, No. 18, 2022, pp. 8930, doi: https://doi.org/10.3390/app12188930.
  5. D. Wu, S. Li, and P. Wu, "CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system", Energy Conversion and Management, Vol. 101, 2015, pp. 658-665, doi: https://doi.org/10.1016/j.enconman.2015.06.025.
  6. T. Pusztai and Z. Simenfalvi, "CFD analysis on a direct spring-loaded safety valve to determine flow forces", Pollack Periodica, Vol. 16, No. 1, 2021, pp. 109-113, doi: https://doi.org/10.1556/606.2020.00122.
  7. H. D. Kim, J. H. Lee, K. A. Park, T. Setoguchi, and S. Matsuo, "A study of the gas flow through a LNG safety valve", Journal of Thermal Science, Vol. 15, 2006, pp. 355-360, doi: https://doi.org/10.1007/s11630-006-0355-5.
  8. L. Yang, Z. Wang, W. Dempster, X. Yu, and S. T. Tu, "Experiments and transient simulation on spring-loaded pressure relief valve under high temperature and high pressure steam conditions", Journal of Loss Prevention in the Process Industries, Vol. 45, 2017, pp. 133-146, doi: https://doi.org/10.1016/j.jlp.2016.11.019.
  9. X. Song, L. Cui, M. Cao, W. Cao, Y. Park, and W. M. Dempster, "A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel", Energy Conversion and Management, Vol. 81, 2014, pp. 407-419, doi: https://doi.org/10.1016/j.enconman.2014.02.021.
  10. X. G. Song, L. T. Wang, Y. C. Park, and W. Sun, "A fluid-structure interaction analysis of the spring-loaded pressure safety valve during popping off", Procedia Engineering, Vol. 130, 2015, pp. 87-94, doi: https://doi.org/10.1016/j.proeng.2015.12.178.
  11. B. Liu, J. Wang, J. Qian, F. Chen, and Z. Jin, "Dynamic response analysis of pilot control globe valve focusing on opening and closing time of pilot valve", Journal of Physics: Conference Series, Vol. 745, No. 3, 2016, pp. 032046, doi: https://doi.org/10.1088/1742-6596/745/3/032046.
  12. J. Ye, Z. Zhao, J. Zheng, S. Salem, J. Yu, J. Cui, and X. Jiao, "Transient flow characteristic of high-pressure hydrogen gas in check valve during the opening process", Energies, Vol. 13, No. 16, 2020, pp. 4222, doi: https://doi.org/10.3390/en13164222.
  13. Ansys Inc., "Ansys fluent theory guide", Ansys Inc., 2022, pp. 38.
  14. B. H. Park, "Simulation of temperature behavior in hydrogen tank during refueling using cubic equations of state", Journal of Hydrogen and New Energy, Vol. 30, No. 5, 2019, pp. 385-394, doi: https://doi.org/10.7316/KHNES.2019.30.5.385.
  15. B. H. Park, "Calculation and comparison of thermodynamic properties of hydrogen using equations of state for compressed hydrogen storage", Journal of Hydrogen and New Energy, Vol. 31, No. 2, 2020, pp. 184-193, doi: https://doi.org/10.7316/KHNES.2020.31.2.184.