DOI QR코드

DOI QR Code

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane

n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구

  • Hyeonsu Jeong (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Younghee Jang (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Ye Hwan Lee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Sung Chul Kim (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Byung Hun Jeong (Agency for Defense Development) ;
  • Sung Su Kim (Department of Environmental Energy Engineering, Kyonggi University)
  • 정현수 (경기대학교 일반대학원 환경에너지공학과) ;
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 정병훈 (국방과학연구소) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2023.11.01
  • Accepted : 2023.11.20
  • Published : 2023.12.10

Abstract

In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

본 연구는 극초음속 비행체의 열부하로 인한 문제를 해결하기 위해 촉매의 Si/Al 비 최적화 및 니켈 이온교환을 통해 탄화수소 분해반응(흡열반응)의 성능 증진에 관한 연구를 수행하였다. 4 MPa, 550 ℃ 조건에서, Si/Al 비 최적화 및 니켈 이온교환으로 제조된 촉매는 열분해 대비 흡열성능이 약 10% 개선되었음을 확인하였다. 활성 변화에 대한 영향 인자를 확인하기 위하여 FT-IR, NH3-TPD 분석을 수행하였으며, HZSM-5 촉매의 Si/Al 비가 산점 발달 및 촉매 활성에 밀접한 상관성이 있음을 관찰하였다. 또한, 니켈이 첨가된 촉매의 탄소 침적 억제 특성을 관찰하기 위해 TGA, O2-TPO 분석을 수행하였다.

Keywords

Acknowledgement

본 연구는 2023년 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. H. Lander and A. C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircraft, 8, 200-207 (1971). https://doi.org/10.2514/3.44255
  2. R. D. Hawthorn and A. C. Nixon, Shock tube ignition delay studies of endothermic fuels, AIAA J., 4, 513-520 (1966). https://doi.org/10.2514/3.3466
  3. D. R. Sobel and L. J. Spadaccini, Hydrocarbon fuel cooling technologies for advanced propulsion, J. Eng. Gas Turbine. Power, 119, 344-351 (1997). https://doi.org/10.1115/1.2815581
  4. D. Petley, S. Jones, and W. Dziedzic, Analysis of cooling systems for hypersonic aircraft, 3rd International Aerospace Planes Conference, December 3, Orlando F.L., U.S.A., (1991).
  5. H. Choi, H. Lee, and K. Hwang, Research activities about characteristics of fuel injection and combustion using endothermic fuel, J. Korean Soc. Propuls. Engineers, 17, 73-80 (2013). https://doi.org/10.6108/KSPE.2013.17.4.073
  6. E. M. Yoon, L. Selvaraj, C. Song, J. B. Stallman, and M. M. Coleman, High-temperature stabilizers for jet fuels and similar hydrocarbon mixtures. 1. Comparative studies of hydrogen donors, Energy Fuels, 10, 806-811 (1996). https://doi.org/10.1021/ef950228l
  7. J. Yu and S. Eser, Thermal decomposition of C10-C14 normal alkanes in near-critical and supercritical regions: Product distributions and reaction mechanisms, Ind. Eng. Chem. Res., 36, 574-584 (1997). https://doi.org/10.1021/ie960392b
  8. J. Yu and S. Eser, Kinetics of Supercritical-Phase Thermal decomposition of C10-C14 normal alkanes and their mixtures, Ind. Eng. Chem. Res., 36, 585-591 (1997). https://doi.org/10.1021/ie9603934
  9. J. Smolke, F. Carbone, F. N. Egolfopoulos, and H. Wang, Effect of n-dodecane decomposition on its fundamental flame properties, Combust. Flame, 190, 65-73 (2018). https://doi.org/10.1016/j.combustflame.2017.11.009
  10. K. D. Dahm, P. S. Virk, R. Bounaceur, F. Battin-Leclerc, P. M. Marquaire, R. Fournet, E. Daniau, and M. Bouchez, Experimental and modelling investigation of the thermal decomposition of n-dodecane, J. Anal. Appl., 71, 865-881 (2004).
  11. D. H. Hyeon, J. Kim, B. H. Chun, S. H. Kim, B. H. Jeong, and J. S. Han, Improvement of heat of reaction of jet fuel using pore structure controlled zeolite catalyst, J. Korean Soc. Propuls. Engineers, 18, 95-100 (2014). https://doi.org/10.6108/KSPE.2014.18.5.095
  12. F. Meng, G. Liu, L. Wang, S. Qu, X. Zhang, and Z. Mi, Effect of HZSM-5 coating thickness upon catalytic cracking of n-dodecane under supercritical condition, Energy Fuels, 24, 2848-2856 (2010). https://doi.org/10.1021/ef100128a
  13. F. Meng, G. Liu, S. Qu, L. Wang, X. Zhang, and Z. Mi, Catalytic cracking and coking of supercritical n-dodecane in microchannel coated with HZSM-5 zeolites, Ind. Eng. Chem. Res., 49, 8977-8983 (2010). https://doi.org/10.1021/ie101158w
  14. S. Bao, G. Liu, X. Zhang, L. Wang, and Z. Mi, New method of catalytic cracking of hydrocarbon fuels using a highly dispersed nano-HZSM-5 catalyst, Ind. Eng. Chem. Res., 49, 3972-3975 (2010). https://doi.org/10.1021/ie901801q
  15. J. Kim, D. H. Hyeon, S. H. Park, B. H. Chun, B. H. Jeong, J. S. Han, and S. H. Kim, Catalytic endothermic reactions of exo-tetrahydrodicyclopentadiene with zeolites an improvement of heat of reactions, Catal. Today, 232, 63-68 (2014). https://doi.org/10.1016/j.cattod.2013.10.045
  16. B. Liu, Q. Zhu, L. X. Qin, X. J. Li, X. Y. Li, S. Y. Tang, and J. L. Wang, Heat-sink enhancement of supercritical methylcyclohexane cracking over lanthanum-modified beta zeolite, J. Propuls. Power, 32, 801-809 (2016). https://doi.org/10.2514/1.B35655
  17. T. Tago, H. Konno, Y. Nakasaka, R. Ohnaka, J. Nishimura, and T. Masuda, Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha, Microporous Mesoporous Mater., 175, 25-33 (2013). https://doi.org/10.1016/j.micromeso.2013.03.016
  18. S. Y. Han, C. W. Lee, J. R. Kim, N. S. Han, W. C. Choi, C. H. Shin, and Y.-K. Park, Selective formation of light olefins by the cracking of heavy naphtha over acid catalysts, Stud. Surf. Sci. Catal., 153, 157-160 (2004). https://doi.org/10.1016/S0167-2991(04)80237-4
  19. S. Wong, N. Ngadi, T. A. T. Abdullah, and I. M. Inuwa, Catalytic cracking of LDPE dissolved in benzene using nickel impregnated zeolites, Ind. Eng. Chem. Res., 55, 2543-2555 (2016). https://doi.org/10.1021/acs.iecr.5b04518
  20. B. Xu, S. Bordiga, R. Prins, and J. A. van Bokhoven, Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite, Appl. Catal. A Gen., 333, 245-253 (2007). https://doi.org/10.1016/j.apcata.2007.09.018
  21. H. J. Kim, S. G. Jeong, and M. H. Yoon, Trends in catalyst technology for endothermic decomposition of liquid fuel, News & Information for Chemical Engineers, 37, 203-209 (2019).
  22. T. H. Lee, D. H. Hyeon, S. H. Kim, B. H. Jeong, J. S. Han, Deactivation mechanism of zeolite catalyst in endothermic decomposition reaction of liquid fuel for hypersonic flight cooling, J. Korean Soc. Propulsion Engineers, 47, 1245-1249 (2016).
  23. L. Shirazi, E. Jamshidi1, M. R. Ghasemi, The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size, Cryst. Res. Technol., 43, 1300-1306 (2008). https://doi.org/10.1002/crat.200800149
  24. T. Armaroli, L.J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, G. Busca, Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites, Appl. Catal. A Gen., 306, 78-84 (2006). https://doi.org/10.1016/j.apcata.2006.03.030
  25. N. Rahimi and R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A Gen., 398, 1-17 (2011). https://doi.org/10.1016/j.apcata.2011.03.009
  26. J. Zhao, W. Guo, G. Liu, X. Zhang, L. Wang, Cracking of n-dodecane during supercritical state on HZSM-5 membranes, Fuel Process. Technol., 91, 1090-1097 (2010).
  27. Z. Diao, L. Cheng, X. Hou, D. Rong, Y. Lu, W. Yue, and D. Sun, Fabrication of the hierarchical HZSM-5 membrane with tunable mesoporosity for catalytic cracking of n-Dodecane, Catalysts, 9, 155 (2019).
  28. Y. Ji, H. Yang, Q. Zhang, and W. Yan, Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane, J. Solid State Chem., 251, 7-13 (2017). https://doi.org/10.1016/j.jssc.2017.03.023
  29. Y. Ji, H. Yang, Q. Zhang, and W. Yan, Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking: A review, Catalysts, 7, 367 (2017).
  30. M. H. M. Ahmed, O. Muraza, A. K. Jamil, E. N. Shafei, Z. H. Yamani, and K.-H. Choi, Steam catalytic cracking of n-dodecane over ni and ni/co bimetallic catalyst supported on hierarchical BEA zeolite, Energy Fuels, 31, 5482-8490 (2017). https://doi.org/10.1021/acs.energyfuels.7b00468
  31. Y. Liu, W. Qu, W. Chang, S. Pan, Z. Tian, X. Meng, M. Rigutto, A. van der Made, L. Zhao, X. Zheng, and F.-S. Xiao, Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine, J. Colloid Interface Sci., 418, 193-199 (2014). https://doi.org/10.1016/j.jcis.2013.11.065
  32. A. J. Maia, B. G. Oliveira, P. M. Esteves, B. Louis, Y. L. Lam, M. M. Pereira, Isobutane and n-butane cracking on Ni-ZSM-5 catalyst: Effect on light olefin formation, Appl. Catal. A Gen., 403, 58-64 (2011).