• Title/Summary/Keyword: Acid site

검색결과 1,085건 처리시간 0.144초

메탄올의 전환반응에서 보로실리케이트의 촉매성질 (Catalytic Properties of Borosilicate in Methanol Conversion)

  • 이계수;조민수;정병구;서곤
    • 대한화학회지
    • /
    • 제34권4호
    • /
    • pp.360-369
    • /
    • 1990
  • 보로실리케이트와 HZSM-5 제올라이트 및 이들의 골격에 철이 일부 치환된 촉매를 제조하여 메탄올의 전환반응에서 촉매성질을 조사하였다. 산점의 세기와 양이 생성물 분포에 미치는 영향을 암모니아의 승온 탈착곡선으로부터 얻어진 산성도와 연관지어 고찰하였다. 강한 산점이 적은 보로실리케이트 촉매에서는 프로필렌 선택도가 높았으나, 강한 산점이 많은 HZSM-5 제올라이트 촉매에서는 방향족 화합물의 선택도가 높았다. 약한 산점이 전환반응에 기여하는지 여부는 확인되지 않았으나, 생성물 선택도는 강한 산점의 양과 관련지어 설명할 수 있었다. 철의 치환으로 약한 산점이 많아졌으나, 전화율이나 올레핀 선택도에는 영향이 없었다.

  • PDF

Site-specific Mutagenesis에 의한 PRD1 DNA Polymerase의 활성부위 결정 (Determination of Active Site in PRD1 DNA Polymerase by Site-specific Mutagenesis)

  • 황정원;정구홍
    • 미생물학회지
    • /
    • 제29권4호
    • /
    • pp.209-214
    • /
    • 1991
  • The PRD1 DNA polymerase is a small multi-functional enzyme containing conserved amino acid sequences shared by family B DNA polymerases. Thus the PRD1 DNA polymerase provides an useful model system with which to study structure-functional relationships of DNA polymerase molecules. In order to investigate the functional and structural roles of the highly conserved amino acid sequences, we have introduced three mutations into a conserved amino acid of the PRD1 DNA polymerase. Genetic complememtation study indicated that each mutation inactivated DNA polymerase catalytic activity.

  • PDF

지방산 결합단백질과 인지질막 사이의 지방산이동기전 (Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • 제30권8호
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

Bacillus subtilis 유래 Glycerol-3-phosphate Cytidylyltransferase의 화학적 수식

  • 박영서
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.173-177
    • /
    • 1997
  • Glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis was modified with various chemical modifiers to determine the active sites of the enzyme. Treatment of the enzyme with group-specific reagents diethylpyrocarbonate, N-bromosuccinimide, or carbodiimide resulted in complete loss of enzyme activity, which shows histidine, tryptophan, and glutamic acid or aspartic acid residues are at or near the active site. In each case, inactivation followed pseudo first-order kinetics. Inclusion of glycerol-3-phosphate and/or CTP prevented the inactivation, indicating the presence of tryptophan and glutamic acid or aspartic acid residues at the substrate binding site. Analysis of kinetics of inactivation showed that the loss of enzyme activity was due to modification of a two histidine residues, single tryptophan residue, and two glutamic acid or aspartic acid residues.

  • PDF

헤테로폴리산 촉매의 산점 형성과 역할 (Formation and Role of Acid Sites of Heteropoly Acid Catalysts)

  • 송인규;이종국;송재천;이화영
    • 공업화학
    • /
    • 제5권3호
    • /
    • pp.431-437
    • /
    • 1994
  • 에탄을 전화반응 및 MTBE (methyl t-butyl ether)분해반응을 통하여 헤테로폴리산 촉매가 지니는 표면 및 내부 산점의 역할과 형성에 대하여 살펴 보았다. 12-텅스토인산에서 에탄올 탈수반응을 수행할 경우 디에틸에테르는 표면산점에서 생성되며 에틸렌은 촉매 내부산점에서 생성된다. 물은 산점을 강화하는 역할을 하지만 유기염기의 경우 내부 산점을 약화시킨다. 금속염의 산점 형성은 결정수의 가수분해 혹은 금속의 부분적 치환에 따른 양성자에 기인하며 수소로 처리할 경우 산점이 재생되었다. 또한 산 특성 제어를 통하여 선택적 산화반응 촉매로서의 헤테로폴리산 설계가 가능하다.

  • PDF

화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인 (Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers)

  • 박영서
    • 한국미생물·생명공학회지
    • /
    • 제34권2호
    • /
    • pp.121-128
    • /
    • 2006
  • Bacillus alcalophilus AX2000으로부터 xylanase를 정제한 후 효소의 활성부위를 조사하기 위하여 여러 가지 화학수식제를 사용하여 효소활성의 저해도를 측정하였다. 여러 가지 화학 수식제 중에서 carbodiimide와 N-bromosuccinimide가 효소 활성을 완전히 저해시켜 glutamic acid또는 aspartic acid 잔기와 tryptophan 잔기가 효소의 활성부위에 관여하리라 추측되었다. 각각의 경우에 효소 실활은 수식제의 첨가농도에 따라 pseudo first-order kinetics 양식을 보여주었으며, carbodiimide와 N-bromosuccinimide는 각각 비경쟁적 저해와 경쟁적 저해방식을 나타내었다. 기질첨가에 의한 효소활성 보호실험을 통하여 tryptophan 잔기가 기질결합부위라 판단 되었다. 효소 실활속도의 분석에 의해 효소활성에는 2개의 glutamic acid 또는 aspartic acid 잔기와 1개의 tryptophan 잔기가 관여하는 것으로 나타났다.

4-Substituted-kynurenic Acid Derivatives:A Novel Class of NMDA Receptor Glycine Site Antagonists

  • Kim, Ran-Hee;Chung, Yong-Jun;Lee, Chang-Woo;Jae, Yang-Kong;Young, Sik-Jung;Seong, Churl-Min;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • 제20권4호
    • /
    • pp.351-357
    • /
    • 1997
  • A series of 4-substituted-kynurenic acid derivatives possessing several different substituents at C4-position which are consisted of both a flexible propyloxy chain and an adjunct several type of carbonyl groups has been synthesized and evaluated for their in vitro antagonist activity at the glycine site on the NMDA receptor. Of them, N-benzoylthiourea 15c and N-phenylthiourea 15a were found to have the best in vitro binding affinity with $IC_{50}$ of 3.95 and $6.04{\mu}M$, respectively. On the other hand, in compounds 12a-c and 13 the displacement of a thiourea group to an amide or a carbamate caused a significant decrease of the in vitro binding affinity. In the SAR study of the 4-substituted kynurenic acid derivatives, it was realized that the terminal substitution pattern on a flexible C4-propyloxy chain of kynurenic acid nucleus significantly influences on the binding affinity for glycine site; the binding affinity to the NMDA receptor might be increased by the introduction of a suitable electron rich substituent at C4 of kynurenic acid nucleus.

  • PDF

잠재성 특이산성토중 강관말뚝의 부식 (Steel Pile Corrosion in Potential Acid Sulfate Soil)

  • 이승헌;박미현;윤경섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

산성비가 토양미생물에 미치는 영향 (Effect of Acid Rain in Soil Microorganism)

  • 김갑정;임진아;박성주;문형태;박경량;이인수
    • 생명과학회지
    • /
    • 제8권3호
    • /
    • pp.299-304
    • /
    • 1998
  • In order to clarify the effects of acid rain on soil microorganisms, the inpact of acid to soil microorganisms was survyed for 14 weeks using soil microcosms from industrial site A and B, Gaejok mountain, and Daechong lake in Taejeon area. The acid tolerant-microorganisms in natural soil, using culturing method were counted to be 5.8 - $8.0{\times}10^6$CFU/g soil. The number of microorganisms using ATP-biomass analysis for natural soil samples were also analyzed and 2.2 - $2.6{\times}10^9$ cell/g soil in industrial site A and B, Gaejok mountain, and Daechong lake were determined. In soil samples, which were treated with artificial acid rain, the number of acid tolerant microorganisms were counted 2.9 - $5.8{\times}10^5$ and 2.8 - $7.5{\times}10^8$, respectively. Therefore, we conformed that the numver of soil microorganisms were influenced by acid rain. Also, long term acid tolerant microorganisms were identified as Rhodotorula sp. and Pseudomonas sp.

  • PDF

HBV Polymerase Residues $Asp^{429}$ and $Asp^{551}$, Invariant at Motifs A and C are Essential to DNA Binding

  • Kim, Youn-Hee;Hong, Young-Bin;Jung, Gu-Hung
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.498-502
    • /
    • 1998
  • HBV polymerase shares several regions of amino acid homology with other DNA-directed and RNA-directed polymerases. The amino acid residues $Asp^{429}$, $Gly^{518}$, $Asp^{551}$, $Lys^{585}$, and $Gly^{641}$ in the conserved motifs A, B', C, D, and E in the polymerase domain of HBV polymerase were mutated to alanine or histidine by in vitro site-directed mutagenesis. Those mutants were overexpressed, purified, and analyzed against DNA-dependent DNA polymerase activity and affinity for DNA binding. All those mutants did not show DNA-dependent DNA polymerase activities indicating that those five amino acid residues are all critical in DNA polymerase activity. South-Western analysis shows that amino acid residues $ASp^{429}$ and $ASp^{551}$ are essential to DNA binding, and $Gly^{318}$ and $Gly^{585}$ also affect DNA binding to a certain extent.

  • PDF