Acknowledgement
본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(과제번호: NRF-2019R1C1C1009008).
References
- Acar, C., and Dincer, I., "The potential role of hydrogen as a sustainable transportation fuel to combat global warming", International Journal of Hydrogen Energy, 45(5), pp. 3396~3406. (2020). https://doi.org/10.1016/j.ijhydene.2018.10.149
- Feng, S., Hao Ngo, H., Guo, W., Woong Chang, S., Duc Nguyen, D., Thanh Bui, X., Zhang, X., Ma, X.Y., and Ngoc Hoang, B., "Biohydrogen production, storage, and delivery: A comprehensive overview of current strategies and limitations", Chemical Engineering Journal, 471, p. 144669. (2023).
- Yang, E., Omar Mohamed, H., Park, S.-G., Obaid, M., Al-Qaradawi, S.Y., Castano, P., Chon, K., and Chae, K.-J., "A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies", Bioresource Technology, 320, pp. 124363. (2021).
- Logan, B.E., and Rabaey, K., "Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies", Science, 337(6095), pp. 686~690. (2012). https://doi.org/10.1126/science.1217412
- Xu, L., et al., "Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: Mechanisms, methods, and perspectives", Chemical Engineering Journal, 471, p. 144670. (2023).
- Guo, K., Tang, X., Du, Z., and Li, H., "Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode", Biochemical Engineering Journal, 51(1), pp. 48~52. (2010). https://doi.org/10.1016/j.bej.2010.05.001
- Koo, B., and Jung, S. P., "Trends and perspectives of microbial electrolysis cell technology for ultimate green hydrogen production", Jornal of Korean Society of Environmental Engineers, 44(10), pp. 383~396 (2022). https://doi.org/10.4491/KSEE.2022.44.10.383
- Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sl eutel s, T. H. J. A., Jeremiasse, A. W., and Rozendal, R. A., "Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter", Environmental Science & Technology, 42(23), pp. 8630~8640. (2008). https://doi.org/10.1021/es801553z
- Tartakovsky, B., Manuel, M.F., Wang, H., and Guiot, S. R., "High rate membrane-less microbial electrolysis cell for continuous hydrogen production", International Journal of Hydrogen Energy, 34(2), pp. 672~677. (2009). https://doi.org/10.1016/j.ijhydene.2008.11.003
- Kong, D., Zhang, K., Liang, J., Gao, W., and Du, L., "Methanogenic community during the anaerobic digestion of different substrates and organic loading rates", Microbiology Open, 8(5), pp. e00709 (2019).
- ElMekawy, A., Srikanth, S., Vanbroekhoven, K., De Wever, H., and Pant, D., "Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES)", Journal of Power Sources, 262, pp. 183~191. (2014). https://doi.org/10.1016/j.jpowsour.2014.03.111
- Li, X.-H., Liang, D.-W., Bai, Y.-X., Fan, Y.-T., and Hou, H.-W., "Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement", International Journal of Hydrogen Energy, 39(17), pp. 8977~8982. (2014). https://doi.org/10.1016/j.ijhydene.2014.03.065
- Cristiani, L., Zeppilli, M., Villano, M., and Majone, M., "Role of the organic loading rate and the electrodes' potential control strategy on the performance of a micro pilot tubular microbial electrolysis cell for biogas upgrading", Chemical Engineering Journal, 426, pp. 131909 (2021).
- Shen, R., Jiang, Y., Ge, Z., Lu, J., Zhang, Y., Liu, Z., and Ren, Z. J., "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation", Applied Energy, 212, pp. 509~515. (2018). https://doi.org/10.1016/j.apenergy.2017.12.065
- Kook, L., Rozsenberszki, T., Nemestothy, N., Belafi-Bako, K., and Bakonyi, P., "Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization", Journal of Cleaner Production, 112, pp. 4406-4412 (2016). https://doi.org/10.1016/j.jclepro.2015.06.116
- Sasaki, K., Sasaki, D., Tsuge, Y., Morita, M., and Kondo, A., "Changes in the microbial consortium during dark hydrogen fermentation in a bioelectrochemical system increases methane production during a two-stage process", Biotechnol. Biofuels, 11(1), 173. (2018).
- Lee, D., Kim, J., Seo, H., and Ahn, Y., "Effect of Ultrasonic Pretreatment of Sewage Sludge on the Performance of Bioelectrochemical Anaerobic Digester", Jornal of Korean Society of Environmental Engineers, 44(1), pp. 13~20. (2022). https://doi.org/10.4491/KSEE.2022.44.1.13
- Baird, R., and Laura Bridgewater, Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association, Washington, D.C. (2017).
- Call, D., and Logan, B. E., "Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane", Environmental Science & Technology, 42(9), pp. 3401~3406. (2008). https://doi.org/10.1021/es8001822
- Kanellos, G., Tremouli, A., Arvanitakis, G., and Lyberatos, G., "Boosting methane production and raw waste activated sludge treatment in a microbial electrolysis cell-anaerobic digestion (MEC-AD) system: The effect of organic loading rate", Bioelectrochemistry, 155, pp. 108555. (2024).
- Ruiz, Y., Baeza, J.A., Guisasola, A., "Revealing the proliferation of hydrogen scavengers in a single-chamber microbial electrolysis cell using electron balances", International Journal of Hydrogen Energy, 38(36), pp. 15917~15927. (2013). https://doi.org/10.1016/j.ijhydene.2013.10.034
- Tamilarasan, K., Banu, J. R., Jayashree, C., Yogalakshmi, K. N., and Gokulakrishnan, K., "Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater", Journal of Environmental Chemical Engineering, 5(1), pp. 1021~1026. (2017). https://doi.org/10.1016/j.jece.2017.01.025
- Kannaiah Goud, R., and Venkata Mohan, S., "Regulating biohydrogen production from wastewater by applying organic load-shock: Change in the microbial community structure and bio-electrochemical behavior over long-term operation", International Journal of Hydrogen Energy, 37(23), pp. 17763~17777. (2012). https://doi.org/10.1016/j.ijhydene.2012.08.124
- Lewis, A. J., and Borole, A. P., "Microbial electrolysis cells using complex substrates achieve high performance via continuous feeding-based control of reactor concentrations and community structure", Applied Energy, 240, pp. 608~616. (2019). https://doi.org/10.1016/j.apenergy.2019.02.048
- Ye, Y., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Liu, Y., Nghiem, L.D., Zhang, X., and Wang, J., "Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell", Bioresource Technology, 281, pp. 367-373. (2019). https://doi.org/10.1016/j.biortech.2019.02.108
- Mei, X., Lu, B., Yan, C., Gu, J., Ren, N., Ren, Z. J., and Xing, D., "The interplay of active energy harvesting and wastewater organic loading regulates fermentation products and microbiomes in microbial fuel cells. Resources", Conservation and Recycling, 183, pp. 106366 (2022).
- Cho, S.-K., Lee, M.-E., Lee, W., and Ahn, Y., "Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input", International Journal of Hydrogen Energy, 44(4), pp. 2253-2257. (2019). https://doi.org/10.1016/j.ijhydene.2018.07.025