DOI QR코드

DOI QR Code

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells

기질 농도에 따른 미생물전기분해전지의 운전 특성

  • Hwijin Seo (Department of Energy Engineering, Gyeongsang National University) ;
  • Jaeil Kim (Department of Energy Engineering, Gyeongsang National University) ;
  • Seo Jin Ki (Department of Environmental Engineering, Gyeongsang National University) ;
  • Yongtae Ahn (Future Convergence Technology Research Institute, Gyeongsang National University)
  • 서휘진 (경상국립대학교 에너지공학과) ;
  • 김재일 (경상국립대학교 에너지공학과) ;
  • 기서진 (경상국립대학교 환경공학과) ;
  • 안용태 (경상국립대학교 미래융복합기술연구소)
  • Received : 2023.11.23
  • Accepted : 2023.12.15
  • Published : 2023.12.30

Abstract

This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.

본 연구는 주입 기질 농도에 따른 미생물전기분해전지 (Microbial electrolysis cell, MEC)의 운전성능을 조사하였다. 주입 기질 농도에 따른 MEC의 운전 성능을 비교하기 위해 6 개의 실험실 규모 MEC를 2, 4, 6 g/L Sodium acetate 조건으로 순서대로 주입 농도를 증가시켜 운전하였다. 전류밀도, 수소 생산량, SCOD 제거율을 분석하였고, 에너지 효율, cathodic hydrogen recovery를 계산하여 주입 기질 농도 별 MEC의 운전성능을 비교하였다. 체적 전류밀도는 4 g/L 조건에서 76.3 A/m3였고, 6 g/L로 주입 농도를 증가시켰을 때 19.0 A/m3로 4 g/L 주입 조건에 비해 75% 감소하였다. 수소 생산량은 4 g/L 주입 조건이 47.3 ± 16.8 mL로 가장 높았으나 수소 수율은 2 g/L 주입 조건이 1.1 L H2/g CODin로 가장 높았다. 에너지 효율 역시 2 g/L 조건에서 가장 높았고, 6 g/L 조건에서 가장 낮은 결과를 보여주었다. 최대 전기에너지 효율은 76.4%였으며, 2 g/L 조건에서 최대 전체에너지 효율은 39.7%였다. 그러나 기질 농도가 6 g/L로 증가하였을 때, 성능이 급격히 감소하였다. Cathodic hydrogen recovery 역시 에너지 효율과 유사한 경향을 보였으며, 가장 낮은 농도 조건에서 가장 높은 성능을 보여주었다. 따라서 MEC 운전에 있어서 SCOD 제거율뿐만 아니라 에너지 효율 등을 고려한 최적 운전을 위해서는 낮은 주입 농도 조건에서 운전하는 것이 바람직할 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(과제번호: NRF-2019R1C1C1009008).

References

  1. Acar, C., and Dincer, I., "The potential role of hydrogen as a sustainable transportation fuel to combat global warming", International Journal of Hydrogen Energy, 45(5), pp. 3396~3406. (2020). https://doi.org/10.1016/j.ijhydene.2018.10.149
  2. Feng, S., Hao Ngo, H., Guo, W., Woong Chang, S., Duc Nguyen, D., Thanh Bui, X., Zhang, X., Ma, X.Y., and Ngoc Hoang, B., "Biohydrogen production, storage, and delivery: A comprehensive overview of current strategies and limitations", Chemical Engineering Journal, 471, p. 144669. (2023).
  3. Yang, E., Omar Mohamed, H., Park, S.-G., Obaid, M., Al-Qaradawi, S.Y., Castano, P., Chon, K., and Chae, K.-J., "A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies", Bioresource Technology, 320, pp. 124363. (2021).
  4. Logan, B.E., and Rabaey, K., "Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies", Science, 337(6095), pp. 686~690. (2012). https://doi.org/10.1126/science.1217412
  5. Xu, L., et al., "Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: Mechanisms, methods, and perspectives", Chemical Engineering Journal, 471, p. 144670. (2023).
  6. Guo, K., Tang, X., Du, Z., and Li, H., "Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a mipor cathode", Biochemical Engineering Journal, 51(1), pp. 48~52. (2010). https://doi.org/10.1016/j.bej.2010.05.001
  7. Koo, B., and Jung, S. P., "Trends and perspectives of microbial electrolysis cell technology for ultimate green hydrogen production", Jornal of Korean Society of Environmental Engineers, 44(10), pp. 383~396 (2022). https://doi.org/10.4491/KSEE.2022.44.10.383
  8. Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sl eutel s, T. H. J. A., Jeremiasse, A. W., and Rozendal, R. A., "Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter", Environmental Science & Technology, 42(23), pp. 8630~8640. (2008). https://doi.org/10.1021/es801553z
  9. Tartakovsky, B., Manuel, M.F., Wang, H., and Guiot, S. R., "High rate membrane-less microbial electrolysis cell for continuous hydrogen production", International Journal of Hydrogen Energy, 34(2), pp. 672~677. (2009). https://doi.org/10.1016/j.ijhydene.2008.11.003
  10. Kong, D., Zhang, K., Liang, J., Gao, W., and Du, L., "Methanogenic community during the anaerobic digestion of different substrates and organic loading rates", Microbiology Open, 8(5), pp. e00709 (2019).
  11. ElMekawy, A., Srikanth, S., Vanbroekhoven, K., De Wever, H., and Pant, D., "Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES)", Journal of Power Sources, 262, pp. 183~191. (2014). https://doi.org/10.1016/j.jpowsour.2014.03.111
  12. Li, X.-H., Liang, D.-W., Bai, Y.-X., Fan, Y.-T., and Hou, H.-W., "Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement", International Journal of Hydrogen Energy, 39(17), pp. 8977~8982. (2014). https://doi.org/10.1016/j.ijhydene.2014.03.065
  13. Cristiani, L., Zeppilli, M., Villano, M., and Majone, M., "Role of the organic loading rate and the electrodes' potential control strategy on the performance of a micro pilot tubular microbial electrolysis cell for biogas upgrading", Chemical Engineering Journal, 426, pp. 131909 (2021).
  14. Shen, R., Jiang, Y., Ge, Z., Lu, J., Zhang, Y., Liu, Z., and Ren, Z. J., "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation", Applied Energy, 212, pp. 509~515. (2018). https://doi.org/10.1016/j.apenergy.2017.12.065
  15. Kook, L., Rozsenberszki, T., Nemestothy, N., Belafi-Bako, K., and Bakonyi, P., "Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization", Journal of Cleaner Production, 112, pp. 4406-4412 (2016). https://doi.org/10.1016/j.jclepro.2015.06.116
  16. Sasaki, K., Sasaki, D., Tsuge, Y., Morita, M., and Kondo, A., "Changes in the microbial consortium during dark hydrogen fermentation in a bioelectrochemical system increases methane production during a two-stage process", Biotechnol. Biofuels, 11(1), 173. (2018).
  17. Lee, D., Kim, J., Seo, H., and Ahn, Y., "Effect of Ultrasonic Pretreatment of Sewage Sludge on the Performance of Bioelectrochemical Anaerobic Digester", Jornal of Korean Society of Environmental Engineers, 44(1), pp. 13~20. (2022). https://doi.org/10.4491/KSEE.2022.44.1.13
  18. Baird, R., and Laura Bridgewater, Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association, Washington, D.C. (2017).
  19. Call, D., and Logan, B. E., "Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane", Environmental Science & Technology, 42(9), pp. 3401~3406. (2008). https://doi.org/10.1021/es8001822
  20. Kanellos, G., Tremouli, A., Arvanitakis, G., and Lyberatos, G., "Boosting methane production and raw waste activated sludge treatment in a microbial electrolysis cell-anaerobic digestion (MEC-AD) system: The effect of organic loading rate", Bioelectrochemistry, 155, pp. 108555. (2024).
  21. Ruiz, Y., Baeza, J.A., Guisasola, A., "Revealing the proliferation of hydrogen scavengers in a single-chamber microbial electrolysis cell using electron balances", International Journal of Hydrogen Energy, 38(36), pp. 15917~15927. (2013). https://doi.org/10.1016/j.ijhydene.2013.10.034
  22. Tamilarasan, K., Banu, J. R., Jayashree, C., Yogalakshmi, K. N., and Gokulakrishnan, K., "Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater", Journal of Environmental Chemical Engineering, 5(1), pp. 1021~1026. (2017). https://doi.org/10.1016/j.jece.2017.01.025
  23. Kannaiah Goud, R., and Venkata Mohan, S., "Regulating biohydrogen production from wastewater by applying organic load-shock: Change in the microbial community structure and bio-electrochemical behavior over long-term operation", International Journal of Hydrogen Energy, 37(23), pp. 17763~17777. (2012). https://doi.org/10.1016/j.ijhydene.2012.08.124
  24. Lewis, A. J., and Borole, A. P., "Microbial electrolysis cells using complex substrates achieve high performance via continuous feeding-based control of reactor concentrations and community structure", Applied Energy, 240, pp. 608~616. (2019). https://doi.org/10.1016/j.apenergy.2019.02.048
  25. Ye, Y., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Liu, Y., Nghiem, L.D., Zhang, X., and Wang, J., "Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell", Bioresource Technology, 281, pp. 367-373. (2019). https://doi.org/10.1016/j.biortech.2019.02.108
  26. Mei, X., Lu, B., Yan, C., Gu, J., Ren, N., Ren, Z. J., and Xing, D., "The interplay of active energy harvesting and wastewater organic loading regulates fermentation products and microbiomes in microbial fuel cells. Resources", Conservation and Recycling, 183, pp. 106366 (2022).
  27. Cho, S.-K., Lee, M.-E., Lee, W., and Ahn, Y., "Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input", International Journal of Hydrogen Energy, 44(4), pp. 2253-2257. (2019). https://doi.org/10.1016/j.ijhydene.2018.07.025