DOI QR코드

DOI QR Code

Characteristic evaluation of anaerobic co-digestion using desulfurization sludge and primary sludge

탈황슬러지 및 생슬러지를 이용한 혐기성 병합소화 특성평가

  • Seulki Koo (R&D Center, Entecs Co., Ltd.) ;
  • Woojin Chung (Department of Civil & Energy System Engineering, Kyonggi University) ;
  • Soonwoong Chang (Department of Civil & Energy System Engineering, Kyonggi University) ;
  • Myoungsoo Park (R&D Center, Entecs Co., Ltd.)
  • 구슬기 (엔텍스(주) 기업부설연구소) ;
  • 정우진 (경기대학교 사회에너지시스템공학과) ;
  • 장순웅 (경기대학교 사회에너지시스템공학과) ;
  • 박명수 (엔텍스(주) 기업부설연구소)
  • Received : 2023.11.13
  • Accepted : 2023.12.16
  • Published : 2023.12.30

Abstract

In this study, anaerobic co-digestion was carried out using desulfurization sludge and sewage sludge (primary sludge) to evaluate the effects of sulfur compounds in anaerobic digestion. The experiment was carried out in the form of a batch test using 500 mL duran bottle, and the mixing ratio of the feedstock was selected based on the ratio of COD/SO4. As a result of the experiment, it was confirmed that the amount of biogas generated and the yield decreased at the mixing ratio of COD/SO4 20 or less. In particular, below COD/SO4 10, it was lower than seed (283.5 mL) which was set without feedstock to correct biogas generated by itself from seed sludge. Methane yield tended to decrease from a ratio of COD/SO4 20 or less to 0.135 m3/kg VS compared to 0.396 m3/kg VS of COD/SO4 50. In addition, compared to 0.0097 m3/kg VS of hydrogen sulfide yield from COD/SO4 50, the ratio of COD/SO4 20 increased sharply to 0.0223 m3/kg VS, and in particular, the highest result was 0.0855 m3/kg VS in COD/SO4 10. Based on these results, it is judged that the effect of sulfide in anaerobic digestion can have an adverse effect if the COD/SO4 ratio decreases to less than 20.

본 연구에서는 혐기성소화에서 황화합물의 영향을 평가하기 위하여 탈황 슬러지 및 하수슬러지(생슬러지)를 이용한 병합소화를 진행하였다. 실험은 500 mL duran bottle을 이용한 batch test의 형태로 수행되었으며, 원료의 혼합 비율은 COD/SO4의 비율을 기준으로 선정하였다. 실험 결과, COD/SO4 20 이하의 혼합 비율에서 바이오가스 발생량 및 수율의 감소가 확인되었다. 특히 COD/SO4 10 이하에서는 식종슬러지에서 자체적으로 발생하는 바이오가스를 보정하기 위해 원료를 투입하지 않은 seed (283.5 mL)보다 낮은 수치를 나타내었다. 메탄 수율의 경우 COD/SO4 50의 0.396 m3 CH4/kg VS에 비해 COD/SO4 20에서 0.135 m3 CH4/kg VS로 급격하게 감소하는 경향을 보였다. 반면, 황화수소의 수율은 COD/SO4 50의 0.0097 m3 H2S/kg VS에 비해 COD/SO4 20의 비율에서 0.0223 m3 H2S/kg VS로 급격하게 증가하였으며, 특히 COD/SO4 10에서 0.0855 m3 H2S/kg VS로 가장 높은 결과를 나타내었다. 이러한 결과를 바탕으로, 혐기성소화에 있어 황화물의 영향은 COD/SO4 비율이 20 이하로 감소할 경우, 악영향을 줄 수 있는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원의 지원을 받아 수행한 과제입니다(No.2021002690002).

References

  1. Jo, E. Y., Park, K. S., Ahn, J. H., "Effect of trace oxygen on H2S removal in anaerobic digestion", J. of Industrial Technology, 39(1), pp. 21~25. (2019).
  2. Kwon, Y. C., "Characteristic and case Study of unaerobic digester in organic wastes", In the Korea Society of Waste Management Spring Conference, pp. 302. (2020).
  3. Shin, H. S., Oh, S. U., "Effect of sulfate and heavy metals on methanogenic activation of in the anaerobic digestion of tannery wastes", J of Korea Organic Resource Recycling Association, 4(1), pp. 13~21. (1996).
  4. Kim, S, H., Ju, H. J., "Effect of feed concentration (S0) and F/M ratio (S0/X0) on anaerobic digestion of thickened sewage sl udge", J of Korean Society of Water and Wastewater, 26(1), pp. 825~831. (2012). https://doi.org/10.11001/jksww.2012.26.6.825
  5. Kim, Y. J., Park, J. K., Yu, M. H., Lee, N. H., "Effect of pre-treatment of sewage sludge on the reduction of hydrogen sulfide (H2S) by air injection and zero valenti Iron", In the Korea Society of Waste Management Spring Conference, pp. 120. (2016).
  6. Chung, T. Y., Cha, G. C, Yu, M. H., Lee, N. H., "Role of sulfate reducing bacteria(SRB) and methane producing bacteria(MPB) with sulfate concentration in anaerobic digestion of waste activated sludges", In Korean Society of Environmental Engineers Spring Conference, pp. 448~455. (2004).
  7. Emer, C., Siobhain, F., and Piet, L., "Anaerobic treatment of sulphate-containing waste streams", J of Antonie van Leeuwenhoek, 67, pp. 29~46. (1995). https://doi.org/10.1007/BF00872194
  8. Matthias, W., Harm, S., and Werner, H., "Anaerobic treatment of tannery wastewater with simultaneous sulphide elimination", J of Water Research, 32(3), pp. 774~780. (1998). https://doi.org/10.1016/S0043-1354(97)00309-6
  9. Shelford, T. J., Gooch, C. A., and Lansing, S. A., "Performance and economic results for two full-scale biotrickling filters to remove H2S from dairy manure-derived biogas" Applied Engineering in Agriculture, 35(3), pp. 283~291. (2019). https://doi.org/10.13031/aea.12939
  10. Cha, G. E., Noh, D. J., Seo, J. H., Lim, J. H., Lee, T. Y., Lee, J. K., "Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process", J of Environmental Science International, 22(9), pp. 1073~1078. (2013). https://doi.org/10.5322/JESI.2013.22.9.1073
  11. Gutbrlet, H., Finkler, S., Patsch, B., Van, E. R., and Prinsloo, F., "The formation of sulphur and sulphur-nitrogen compounds in flue gas desulphurization plants and their influence on the oxidation kinetics of sulphite", J of VGB Kraftwerkstechnik, 76(2), pp. 1~8. (1996).
  12. Jingxin, Z., Yaobin, Z., Jinghui, C., Xie, Q., and Qi L., "Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III) - Reducing conditions", J of Water Research, 47(6), pp. 2033~2040. (2013). https://doi.org/10.1016/j.watres.2013.01.034
  13. Aijie, W., Nanqi, R., Xu, W., and Duujong, L., "Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria", J of Hazardous Materials, V154(1-3), pp. 1060~1065. (2008). https://doi.org/10.1016/j.jhazmat.2007.11.022
  14. Chen, Y., Cheng, J. J., and Creamer, K. S., "Inhibition of anaerobic digestion process: A review", J of Bioresource Technology, 99(10), pp. 4044~4064. (2008). https://doi.org/10.1016/j.biortech.2007.01.057
  15. Siles, J. A., Brekelmans, J., Martin, M. A., Chica, A. F., and Martin, A., "Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion", J of Bioresource Technology, 101(23), pp. 9040~9048. (2010). https://doi.org/10.1016/j.biortech.2010.06.163
  16. Choi, E. and Rim, J. M., " Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment", J of Water Sci Technol, 23(7-9), pp. 1259~1264. (1991). https://doi.org/10.2166/wst.1991.0577
  17. Hulshoff Pol, L. W., Lens, P. N., Stams, A. J., and Lettinga, G., "Anaerobic treatment of sulphate-rich wastewaters", J of Biodegradation, 9(3-4), pp. 213~224. (1998). https://doi.org/10.1023/A:1008307929134
  18. Annachhatre, A. P., and Sauktrakoolvait, S., "Biological Sulfate Reduction Using Molasses as a Carbon Source", J of Water Environment Research, 73(1), pp. 118~126. (2001). https://doi.org/10.2175/106143001X138778
  19. Gene, F. P., Nancy, A. L., Kuo, W. C., Edward L. V. K., and Sanjoy K. B., "Interaction between Sulfate Reducers and Methanogens Fed Acetate and Propionate", Research Journal of the Water Pollution Control Federation, 62(6), pp. 780-788. (1990).
  20. Wilkie, A. C., Riedesel, K. J., and Owens, J. M., "Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks", J of Biomass and Bioenergy, 19(2), pp. 63~102. (2000). https://doi.org/10.1016/S0961-9534(00)00017-9
  21. Barrera,, E. L., Spanjers, H., Dewulf, J., Romero, O., and Rosa, E., "The sulfur chain in biogas production from sulfate-rich liquid substrates: a review on dynamic modeling with vinasse as model substrate", J of Chem Technol Biotechnol, 88(8), pp. 1405~1420. (2013). https://doi.org/10.1002/jctb.4071
  22. Jeong, T. Y., Cha, G. C., Seo, Y. C., Jeon, C., and Choi, S. S., "Effect of COD/sulfate ratios on batch anaerobic digestion using waste activated sludge", J of Industrial and Engineering Chemistry, 14(5), pp. 693~697. (2008). https://doi.org/10.1016/j.jiec.2008.05.006
  23. Mizuno, O., Li, Y. Y., and Noike, T., "Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate", J of Water Science and Technology, 30(8), pp. 45~54. (1994). https://doi.org/10.2166/wst.1994.0378
  24. Prasad, D., Henry, G., and Haik, S., "Role of sulfate reducing bacteria in anaerobic treatment of landfill leachate", In Proceedings of the CSCE Annu. Conf., 10th Canadian Hydrotechnical Conference, Vancouver, British Columbia, pp. 105~112. (1991).
  25. Damianovic, M. H. R. Z., and Foresti, E., "Dynamics of sulfidogenesis associated to methanogenesis in horizontal-flow anaerobic immobilized biomass reactor", J of Process Biochemistry, 44(9), pp. 1050~1054. (2009). https://doi.org/10.1016/j.procbio.2009.04.027