DOI QR코드

DOI QR Code

Alignment of transmitters in indoor visible light communication for flat channel characteristics

  • Received : 2020.12.12
  • Accepted : 2021.07.16
  • Published : 2022.02.01

Abstract

Visible light communication (VLC) systems incorporate ambient lighting and wireless data transmission, and the experienced channel in indoor VLC is a major topic that should be examined for reliable communication. In this study, it is realized that multiple transmitters in classical alignment are the forceful factors for channel characteristics. In the frequency band, fluctuations with sudden drops are observed, where the fluctuation shape is related to the source layout and receiver location. These varying frequency-selective channels need solutions, especially for mobile users, because sustained channel estimation and equalization are necessary as the receiver changes its location. It is proven that using light-emitting diodes (LEDs) with highly directional beams as sources or using a detector with a narrow field of view (FOV) in the receiver may help partially alleviate the problem; the frequency selectivity of the channel reduces in some regions of the room. For flat fading channel characteristics all over the room, LEDs should be aligned in hexagonal cellular structure, and detector FOV should be arranged according to the cell dimension outcomes.

Keywords

References

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB, CRC Press, Boca Raton, FL, USA, 2017.
  2. J. Lian, Z. Vatansever, M. Noshad, and M. Brandt-Pearce, Indoor visible light communications, networking, and applications, J. Phys.: Photon. 1 (2019), no. 1, 1-28. https://doi.org/10.1113/jphysiol.1878.sp000001
  3. M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, A comparative survey of optical wireless technologies: Architectures and applications, IEEE Access 6 (2018), 9819-9840. https://doi.org/10.1109/access.2018.2792419
  4. J. Perez, F. I. Chicharro, B. Ortega, and J. Mora, On the evaluation of an optical OFDM radio over FSO system with IM-DD for high-speed indoor communications, in Proc. IEEE Int. Conf. Transparent Opt. Netw. (Catalonia, Spain), 2017, pp. 1-4.
  5. Y. Qiu, H. H. Chen, and W. X. Meng, Channel modeling for visible light communications-a survey, Wirel. Commun. Mob. Comput. 16 (2016), 2016-2034. https://doi.org/10.1002/wcm.2665
  6. K. Lee, H. Park, and J. R. Barry, Indoor channel characteristics for visible light communications, IEEE Commun. Lett. 15 (2011), no. 2, 217-219. https://doi.org/10.1109/LCOMM.2011.010411.101945
  7. F. Miramirkhani and M. Uysal, Channel modeling and characterization for visible light communications, IEEE Photon. J. 7 (2015), no. 6, 7905616. https://doi.org/10.1109/JPHOT.2015.2504238
  8. S. M. Curuk, and M. Kimyaci, The impact of configuration on channel characteristics in visible light communication, in Proc. IEEE Glob. Power, Energy Commun. Conf. (Nevsehir, Turkey), 2019, pp. 56-61.
  9. J. J. Tana, C. Q. Zou, S. H. Du, and J. T. Tan, Simulation of MIMO channel characteristics for indoor visible light communication with LEDs, Optik 125 (2014), 44-49. https://doi.org/10.1016/j.ijleo.2013.06.071
  10. J. Ding, K. Wang, and Z. Xu, Impact of LED array simplification on indoor visible light communication channel modeling, in Proc. Int. Symp. Commun. Syst., Netw. Digit. Sign (Manchester, UK), 2014, pp. 1159-1164.
  11. D. Ding and X. Ke, A new indoor VLC channel model based on reflection, Opt. Lett. 6 (2010), no. 4, 295-298. https://doi.org/10.1007/s11801-010-0028-1
  12. M. Kowalczyk and J. Siuzdak, Channel modeling and characterization for VLC indoor transmission systems based on MMC ray tracing method, in Proc. Photonics Appl. Astron., Commun., Ind., High-Energy Phys. Exp. (Wilga, Poland), 2018, pp. 1-9.
  13. S. Long, M. A. Khalighi, M. Wolf, S. Bourennane, and Z. Ghassemlooy, Investigating channel frequency selectivity in indoor visible-light communication systems, IET Optoelectron. 10 (2016), no. 3, 80-88. https://doi.org/10.1049/iet-opt.2015.0015
  14. Y. Yang, Z. Zhu, C. Guo, and C. Feng, Power efficient LED placement algorithm for indoor visible light communication, Opt. Express 28 (2020), no. 24 36389-36402. https://doi.org/10.1364/oe.410502
  15. A. M. Vegni and M. Biagi, Optimal LED placement in indoor VLC networks, Opt. Express 27 (2019), no. 6, 8504-8519. https://doi.org/10.1364/oe.27.008504
  16. B. R. Mendoza, S. Rodriguez, R. Perez-Jimenez, A. Ayala, and O. Gonzalez, Comparison of three non-imaging angle-diversity receivers as input sensors of nodes for indoor infrared wireless sensor networks: Theory and simulation, Sensors 16 (2016), no. 7, 1-18. https://doi.org/10.1109/JSEN.2015.2493739
  17. F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR wireless indoor channels, Electron. Lett. 34 (1998), no. 19, 1819-1820. https://doi.org/10.1049/el:19981173
  18. M. Kimyaci and S. M. Curuk, Channel in multiple transmitter visible light communication, Academic Platf. J. Eng. Sci. 9 (2021), no. 1, 10-18.
  19. S. M. Nlom, A. R. Ndjiongue, and K. Ouahada, Cascaded PLC-VLC channel: an indoor measurements campaign, IEEE Access 6 (2018), 25230-25239. https://doi.org/10.1109/access.2018.2831625
  20. R. C. Kizilirmak, Impact of repeaters on the performance of indoor visible light communications, Turkish J. Electr. Eng. Comput. Sci. 23 (2015), 1159-1172. https://doi.org/10.3906/elk-1212-22
  21. J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, Broadband information broadcasting using LED-based interior lighting, J. Light. Technol. 26 (2008), no. 24, 3883-3892. https://doi.org/10.1109/JLT.2008.928525
  22. J. Ding and Z. Xu, Performance of indoor VLC and illumination under multiple reflections, in Proc. Int. Conf. Wirel. Commun. Signal Process. (WCSP), (Hefei, China), 2014, pp. 1-6.
  23. X. Yang and A. Fapojuwo, Performance analysis of hexagonal cellular networks in fading channels, Wirel. Commun. Mob. Comput. 16 (2015), no. 7, 850-867. https://doi.org/10.1002/wcm.2573
  24. M. I. S. Chowdhury, W. Zhang, and M. Kavehrad, Combined deterministic and modified Monte Carlo method for calculating impulse responses of indoor optical wireless channels, J. Light. Technol. 32 (2014), no. 18, 3132-3148. https://doi.org/10.1109/JLT.2014.2339131
  25. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, Simulation of multipath impulse response for indoor wireless optical channels, IEEE J. Sel. Areas Commun. 11 (1993), no. 3, 367-379. https://doi.org/10.1109/49.219552
  26. S. S. Muhammad, Delay profiles for indoor diffused visible light communication, in Proc. Int. Conf. Telecommun. (Graz, Austria), 2015, pp. 1-5.
  27. R. Mitran, and M. Stanic, Delay spread evaluation of HF channels based on ray tracing, in Proc. IEEE Int. Black Sea Conf. Commun. Netw. (Varna, Bulgaria), 2016, pp. 1-5.
  28. A. Al-Kinani, C. X. Wang, H. Haas, and Y. Yang, Characterization and modeling of visible light communication channels, in Proc. IEEE Veh. Technol. Conf. (Nanjing, China), 2016, pp. 1-5.