Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구과제(No. 2020R1C1C1004206)이다.
References
- J. S. Kim, B. H. Kim, H. A. Kim, and K. S. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater., 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
- M. Yu, E. Budiyanto, and H. Tuysuz, Principles of water electrolysis, and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction, Angew. Chem., Int. Ed., 61(1), e202103824 (2022). https://doi.org/10.1002/anie.202103824
- J. Y. Seo and J. H. Kim, 수소에너지 정부 정책 동향 및 R&D 역할, Bulletin of the Korea Photovoltaic Society, 3(2), 7 (2017).
- I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12(2), 463 (2019). https://doi.org/10.1039/C8EE01157E
- D. J. Deka, S. Gunduz, J. S. Kim, T. Fitzgerald, Y. Shi, A. C. Co, and U. S. Ozkan, Hydrogen production from water in a solid oxide electrolysis cell: Effect of Ni doping on lanthanum strontium ferrite perovskite cathodes, Ind. Eng. Chem. Res., 58(50), 22497 (2019). https://doi.org/10.1021/acs.iecr.9b03731
- Y. Chen, Q. Zhong, G. Li, T. Tian, J. Tan, and M. Pan, Electrochemical study of temperature and Nafion effects on interface property for oxygen reduction reaction, Ionics, 24, 3905 (2018). https://doi.org/10.1007/s11581-018-2533-3
- A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation-A review, Renew. Sust. Energ. Rev., 20, 430 (2013). https://doi.org/10.1016/j.rser.2012.11.031
- S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2(3), 442 (2019).
- J. Chi and H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese Journal of Catalysis, 39(3), 390 (2018). https://doi.org/10.1016/S1872-2067(17)62949-8
- D. A. J. Rand, A journey on the electrochemical road to sustainability, J. Solid State Electrochem., 15, 1579 (2011). https://doi.org/10.1007/s10008-011-1410-z
- A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91(4), 157 (2004). https://doi.org/10.1007/s00114-004-0516-x
- S. Wang, A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Converg., 8, 4 (2021) https://doi.org/10.1186/s40580-021-00254-x
- A. Brisse, J. Schefold, and M. Zahid, High temperature water electrolysis in solid oxide cells, Int. J. Hydrog. Energy, 33(20), 5375 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.120
- C. Xiang, K. M. Papadantonakis, and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting, Mater. Horiz., 3, 169 (2016). https://doi.org/10.1039/C6MH00016A
- Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, and J. Wang, Dynamic surface chemistry of catalysts in oxygen evolution reaction, Small Science, 1(7), 2100011, (2021). https://doi.org/10.1002/smsc.202100011
- P. Bhanja, B. Mohanty, A. K. Patra, S. Ghosh, B. K. Jena, and A. Bhaumik, IrO2 and Pt doped mesoporous SnO2 nanospheres as efficient electrocatalysts for the facile OER and HER, ChemCatChem, 11(1), 583 (2019). https://doi.org/10.1002/cctc.201801312
- W. Sun, W. Q. Zaman, C. Ma, J. Liao, C. Ge, and J. Yang, Cerium surface-engineered iridium oxides for enhanced oxygen evolution reaction activity and stability, ACS Appl. Energy Mater., 3(5), 4432 (2020). https://doi.org/10.1021/acsaem.0c00139
- E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Coperet, and T. J. Schmidt, IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction, ACS Catal., 7(4), 2346 (2017). https://doi.org/10.1021/acscatal.6b03246
- Y. Li, L. Xing, D. Yu, A. Libanori, K. Yang, J. Sun, A. Nashalian, Z. Zhu, Z. Ma, Y. Zha, and J. Chen, Hollow IrCo nanoparticles for high-performance overall water splitting in an acidic medium, ACS Appl. Nano Mater., 3(12), 11916 (2020). https://doi.org/10.1021/acsanm.0c02485
- X. Chen, W. Li, N. Song, M. Zhong, S. Yan, J. Xu, W. Zhu, C. Wang, and X. Lu, Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction, Chem. Eng. J., 440, 135851 (2022). https://doi.org/10.1016/j.cej.2022.135851
- Y. Pi, Q. Shao, P. Wang, J. Guo, and X. Huang, General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater., 27(27), 1700886 (2017). https://doi.org/10.1002/adfm.201700886
- H.-B. Wang, J.-Q. Wang, N. Mintcheva, M. Wang, S. Li, J. Mao, H. Liu, C.-K. Dong, S. A. Kulinich, and X.-W. Du, Laser synthesis of iridium nanospheres for overall water splitting, Materials, 12(18), 3028 (2019). https://doi.org/10.3390/ma12183028
- X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, and C. M. Li, Metalsupport interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media, Nano Energy, 62, 117 (2019). https://doi.org/10.1016/j.nanoen.2019.05.034
- J. Yi, W. H. Lee, C. H. Choi, Y. Lee, K. S. Park, B. K. Min, Y. J. Hwang, and H.-S. Oh, Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability, Electrochem. Commun., 104, 106469 (2019). https://doi.org/10.1016/j.elecom.2019.05.018
- Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao, and X. Huang, A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution, Nano Energy, 84, 105909 (2021). https://doi.org/10.1016/j.nanoen.2021.105909
- S. Niu, X. -P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao, and P. Xu, Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid, Appl. Catal. B, 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
- X. Kong, K. Xu, C. Zhang, J. Dai, S. N. Oliaee, L. Li, X. Zeng, C. Wu, and Z. Peng, Free-standing twodimensional Ru nanosheets with high activity toward water splitting, ACS Catal., 6(3), 1487 (2016). https://doi.org/10.1021/acscatal.5b02730
- S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Muller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater., 9(15), 1803795 (2019). https://doi.org/10.1002/aenm.201803795
- R. Huang, Y. Wen, H. Peng, and B. Zhang, Improved kinetics of OER on Ru-Pb binary electrocatalyst by decoupling proton-electron transfer, Chinese J. Catal., 43(1), 130 (2022). https://doi.org/10.1016/S1872-2067(21)63856-1
- W. Jin, H. Wu, W. Cai, B. Jia, M. Batmunkh, Z. Wu, and T. Ma, Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting, Chem. Eng. J., 426, 130762 (2021). https://doi.org/10.1016/j.cej.2021.130762
- Y. Xue, J. Fang, X. Wang, Z. Xu, Yu. Zhang, Q. Lv, M. Liu, W. Zhu, and Z. Zhuang, Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid, Adv. Funct. Mater., 31(32), 2101405 (2021). https://doi.org/10.1002/adfm.202101405
- B. Huang, H. Xu, N. Jiang, M. Wang, J. Huang, and L. Guan, Tensile-strained RuO2 loaded on antimony-tin oxide by fast quenching for proton-exchange membrane water electrolyzer, Adv. Sci., 9(23), 2201654 (2022) https://doi.org/10.1002/advs.202201654