DOI QR코드

DOI QR Code

Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting

고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향

  • Bu, Jong Chan (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Jung, Won Suk (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Lim, Da Bin (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Shim, Yu-Jin (School of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Cho, Hyun-Seok (Hydrogen Research Department, Korea Institute of Energy Research)
  • 부종찬 (한경국립대학교 식품생명화학공학부) ;
  • 정원석 (한경국립대학교 식품생명화학공학부) ;
  • 임다빈 (한경국립대학교 식품생명화학공학부) ;
  • 심유진 (한경국립대학교 식품생명화학공학부) ;
  • 조현석 (한국에너지기술연구원 수소연구단)
  • Received : 2022.10.24
  • Accepted : 2022.11.18
  • Published : 2022.11.30

Abstract

The carbon-neutrality induced by the global warming is important for the modern society. Hydrogen has been received the attention as a new energy source to replace the fossil fuels. Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

전세계의 기후 온난화로 인해 탄소 중립 사회의 중요성이 대두되고 있다. 이를 위해 화석연료를 대체할 새로운 에너지 자원으로 수소에 대한 관심이 커지고 있다. 친환경적이며 풍부하게 존재하는 물의 전기분해를 통한 수소 생산은 매우 중요한 분야이다. 하지만 전기분해의 산소 발생 반응의 경우 매우 높은 과전압과 고가의 귀금속 촉매의 사용이 상용화에 걸림돌로 작용하고 있다. 이에 본 총설에서 최근 5년동안 발표된 고분자 전해질막 수전해 시스템의 산소 발생 반응에 쓰이는 귀금속 촉매의 연구 동향에 대해 요약 및 정리하였다. 가장 널리 사용되는 귀금속 촉매로는 Ir과 Ru 기반의 촉매들이다. 이들은 높은 안정성과 성능 때문에 수전해 촉매로 연구되었다. 하지만 높은 가격으로 인해 성능 향상이 우선 과제이며 이를 위해 지지체와의 상호작용, 합금 촉매, 다양한 후처리 공정 등을 적용하고 있다. 본 총설은 귀금속 촉매의 산소 발생 반응에 대한 활성과 내구성을 높이는 전략 수립에 도움이 될 것으로 예상한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구과제(No. 2020R1C1C1004206)이다.

References

  1. J. S. Kim, B. H. Kim, H. A. Kim, and K. S. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater., 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
  2. M. Yu, E. Budiyanto, and H. Tuysuz, Principles of water electrolysis, and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction, Angew. Chem., Int. Ed., 61(1), e202103824 (2022). https://doi.org/10.1002/anie.202103824
  3. J. Y. Seo and J. H. Kim, 수소에너지 정부 정책 동향 및 R&D 역할, Bulletin of the Korea Photovoltaic Society, 3(2), 7 (2017).
  4. I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12(2), 463 (2019). https://doi.org/10.1039/C8EE01157E
  5. D. J. Deka, S. Gunduz, J. S. Kim, T. Fitzgerald, Y. Shi, A. C. Co, and U. S. Ozkan, Hydrogen production from water in a solid oxide electrolysis cell: Effect of Ni doping on lanthanum strontium ferrite perovskite cathodes, Ind. Eng. Chem. Res., 58(50), 22497 (2019). https://doi.org/10.1021/acs.iecr.9b03731
  6. Y. Chen, Q. Zhong, G. Li, T. Tian, J. Tan, and M. Pan, Electrochemical study of temperature and Nafion effects on interface property for oxygen reduction reaction, Ionics, 24, 3905 (2018). https://doi.org/10.1007/s11581-018-2533-3
  7. A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation-A review, Renew. Sust. Energ. Rev., 20, 430 (2013). https://doi.org/10.1016/j.rser.2012.11.031
  8. S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2(3), 442 (2019).
  9. J. Chi and H. Yu, Water electrolysis based on renewable energy for hydrogen production, Chinese Journal of Catalysis, 39(3), 390 (2018). https://doi.org/10.1016/S1872-2067(17)62949-8
  10. D. A. J. Rand, A journey on the electrochemical road to sustainability, J. Solid State Electrochem., 15, 1579 (2011). https://doi.org/10.1007/s10008-011-1410-z
  11. A. Zuttel, Hydrogen storage methods, Naturwissenschaften, 91(4), 157 (2004). https://doi.org/10.1007/s00114-004-0516-x
  12. S. Wang, A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Converg., 8, 4 (2021) https://doi.org/10.1186/s40580-021-00254-x
  13. A. Brisse, J. Schefold, and M. Zahid, High temperature water electrolysis in solid oxide cells, Int. J. Hydrog. Energy, 33(20), 5375 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.120
  14. C. Xiang, K. M. Papadantonakis, and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting, Mater. Horiz., 3, 169 (2016). https://doi.org/10.1039/C6MH00016A
  15. Z. Kou, X. Li, L. Zhang, W. Zang, X. Gao, and J. Wang, Dynamic surface chemistry of catalysts in oxygen evolution reaction, Small Science, 1(7), 2100011, (2021). https://doi.org/10.1002/smsc.202100011
  16. P. Bhanja, B. Mohanty, A. K. Patra, S. Ghosh, B. K. Jena, and A. Bhaumik, IrO2 and Pt doped mesoporous SnO2 nanospheres as efficient electrocatalysts for the facile OER and HER, ChemCatChem, 11(1), 583 (2019). https://doi.org/10.1002/cctc.201801312
  17. W. Sun, W. Q. Zaman, C. Ma, J. Liao, C. Ge, and J. Yang, Cerium surface-engineered iridium oxides for enhanced oxygen evolution reaction activity and stability, ACS Appl. Energy Mater., 3(5), 4432 (2020). https://doi.org/10.1021/acsaem.0c00139
  18. E. Oakton, D. Lebedev, M. Povia, D. F. Abbott, E. Fabbri, A. Fedorov, M. Nachtegaal, C. Coperet, and T. J. Schmidt, IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction, ACS Catal., 7(4), 2346 (2017). https://doi.org/10.1021/acscatal.6b03246
  19. Y. Li, L. Xing, D. Yu, A. Libanori, K. Yang, J. Sun, A. Nashalian, Z. Zhu, Z. Ma, Y. Zha, and J. Chen, Hollow IrCo nanoparticles for high-performance overall water splitting in an acidic medium, ACS Appl. Nano Mater., 3(12), 11916 (2020). https://doi.org/10.1021/acsanm.0c02485
  20. X. Chen, W. Li, N. Song, M. Zhong, S. Yan, J. Xu, W. Zhu, C. Wang, and X. Lu, Electronic modulation of iridium-molybdenum oxides with a low crystallinity for high-efficiency acidic oxygen evolution reaction, Chem. Eng. J., 440, 135851 (2022). https://doi.org/10.1016/j.cej.2022.135851
  21. Y. Pi, Q. Shao, P. Wang, J. Guo, and X. Huang, General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater., 27(27), 1700886 (2017). https://doi.org/10.1002/adfm.201700886
  22. H.-B. Wang, J.-Q. Wang, N. Mintcheva, M. Wang, S. Li, J. Mao, H. Liu, C.-K. Dong, S. A. Kulinich, and X.-W. Du, Laser synthesis of iridium nanospheres for overall water splitting, Materials, 12(18), 3028 (2019). https://doi.org/10.3390/ma12183028
  23. X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, and C. M. Li, Metalsupport interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media, Nano Energy, 62, 117 (2019). https://doi.org/10.1016/j.nanoen.2019.05.034
  24. J. Yi, W. H. Lee, C. H. Choi, Y. Lee, K. S. Park, B. K. Min, Y. J. Hwang, and H.-S. Oh, Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability, Electrochem. Commun., 104, 106469 (2019). https://doi.org/10.1016/j.elecom.2019.05.018
  25. Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao, and X. Huang, A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution, Nano Energy, 84, 105909 (2021). https://doi.org/10.1016/j.nanoen.2021.105909
  26. S. Niu, X. -P. Kong, S. Li, Y. Zhang, J. Wu, W. Zhao, and P. Xu, Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid, Appl. Catal. B, 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
  27. X. Kong, K. Xu, C. Zhang, J. Dai, S. N. Oliaee, L. Li, X. Zeng, C. Wu, and Z. Peng, Free-standing twodimensional Ru nanosheets with high activity toward water splitting, ACS Catal., 6(3), 1487 (2016). https://doi.org/10.1021/acscatal.5b02730
  28. S. Laha, Y. Lee, F. Podjaski, D. Weber, V. Duppel, L. M. Schoop, F. Pielnhofer, C. Scheurer, K. Muller, U. Starke, K. Reuter, and B. V. Lotsch, Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium, Adv. Energy Mater., 9(15), 1803795 (2019). https://doi.org/10.1002/aenm.201803795
  29. R. Huang, Y. Wen, H. Peng, and B. Zhang, Improved kinetics of OER on Ru-Pb binary electrocatalyst by decoupling proton-electron transfer, Chinese J. Catal., 43(1), 130 (2022). https://doi.org/10.1016/S1872-2067(21)63856-1
  30. W. Jin, H. Wu, W. Cai, B. Jia, M. Batmunkh, Z. Wu, and T. Ma, Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting, Chem. Eng. J., 426, 130762 (2021). https://doi.org/10.1016/j.cej.2021.130762
  31. Y. Xue, J. Fang, X. Wang, Z. Xu, Yu. Zhang, Q. Lv, M. Liu, W. Zhu, and Z. Zhuang, Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid, Adv. Funct. Mater., 31(32), 2101405 (2021). https://doi.org/10.1002/adfm.202101405
  32. B. Huang, H. Xu, N. Jiang, M. Wang, J. Huang, and L. Guan, Tensile-strained RuO2 loaded on antimony-tin oxide by fast quenching for proton-exchange membrane water electrolyzer, Adv. Sci., 9(23), 2201654 (2022) https://doi.org/10.1002/advs.202201654