References
- X. Tang, S. Lv, K. Jiang, G. Zhou, and X. Liu, Recent development of ionic liquid-based electrolytes in lithiumion batteries, J. Power Sources, 542, 231792 (2022). https://doi.org/10.1016/j.jpowsour.2022.231792
- X. Jiang, Y. Chen, X. Meng, W. Cao, C. Liu, Q. Huang, N. Naik, V. Murugadoss, M. Huang, and Z. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review, Carbon, 191, 448-470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011
- C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, and Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118, 7744-7803 (2018). https://doi.org/10.1021/acs.chemrev.8b00288
- M. Inagaki and F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A, 2, 13193-13206 (2014). https://doi.org/10.1039/C4TA01183J
- A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S. H. M. Jafri, and H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications, Materials, 15, 1012 (2022). https://doi.org/10.3390/ma15031012
- M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Synthesis of graphene, Int. Nano Lett., 6, 65-83 (2016). https://doi.org/10.1007/s40089-015-0176-1
- L. Sathishkumar, V. Dhanapal, S. Ravi, R. Saratha, and N. Sugumaran, Compatibility of lithium ion phosphate battery in solar off grid application, J. Electrochem. Sci. Technol., 13(4), 472-478 (2022). https://doi.org/10.33961/jecst.2022.00423
- H. Kim, D. I. Kim, and W.-S. Yoon, Enhancing electrochemical performance of Co(OH)2 anode materials by introducing graphene for next-generation liion batteries, J. Electrochem. Sci. Technol., 13(3), 398-406 (2022). https://doi.org/10.33961/jecst.2022.00122
- M.-S. Shin, C.-K. Choi, M.-S. Park, and S.-M. Lee, Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries, J. Electrochem. Sci. Technol., 13(1), 159-166 (2022). https://doi.org/10.33961/jecst.2021.01004
- X. Lu, M. Yu, H. Huang, and R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology, 10, 269 (1999). https://doi.org/10.1088/0957-4484/10/3/308
- Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett., 86, 073104 (2005). https://doi.org/10.1063/1.1862334
- A.M. Affoune, B.L.V. Prasad, H. Sato, T. Enoki, Y. Kaburagi, and Y. Hishiyama, Experimental evidence of a single nano-graphene, Chem. Phys. Lett., 348, 17-20 (2001). https://doi.org/10.1016/S0009-2614(01)01066-1
- S. Bong, Y.-R. Kim, I. Kim, S. Woo, S. Uhm, J. Lee, and H. Kim, Graphene supported electrocatalysts for methanol oxidation, Electrochem. Commun., 12, 129-131 (2010). https://doi.org/10.1016/j.elecom.2009.11.005
- L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, and Z. Liu, Chemical vapour deposition, Nat. Rev. Methods Primer, 1, 5 (2021). https://doi.org/10.1038/s43586-020-00005-y
- M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed., 36(8), 836-838 (1997). https://doi.org/10.1002/anie.199708361
- J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures1, Org. Lett., 2(7), 969-972 (2000). https://doi.org/10.1021/ol005623w
- W. B. Wan and M. M. Haley, Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "Star" and "Trefoil" graphdiyne substructures via sixfold crosscoupling of hexaiodobenzene, J. Org. Chem., 66(11), 3893-3901 (2001). https://doi.org/10.1021/jo010183n
- X. Li, B. Li, Y. He, and F. Kang, A review of graphynes: Properties, applications and synthesis, New Carbon Mater., 35, 619-629 (2020). https://doi.org/10.1016/S1872-5805(20)60518-2
- X. Gao, H. Liu, D. Wang, and J. Zhang, Graphdiyne: synthesis, properties, and applications, Chem. Soc. Rev., 48, 908-936 (2019). https://doi.org/10.1039/C8CS00773J
- J. Zhou, J. Li, Z. Liu, and J. Zhang, Exploring approaches for the synthesis of few-layered graphdiyne, Adv. Mater., 31, 1803758 (2019). https://doi.org/10.1002/adma.201803758
- D. Malko, C. Neiss, F. Vines, and A. Gorling, Competition for graphene: Graphynes with directiondependent dirac cones, Phys. Rev. Lett., 108, 086804 (2012). https://doi.org/10.1103/PhysRevLett.108.086804
- H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal., 2, 781-794 (2012). https://doi.org/10.1021/cs200652y
- X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries, Electrochem. Commun., 13, 822-825 (2011). https://doi.org/10.1016/j.elecom.2011.05.012
- S. H. Yang, S.-K. Park, and Y. C. Kang, Metal-organic frameworks derived FeSe2@C nanorods interconnected by N-doped graphene nanosheets as advanced anode materials for Na-ion batteries, Int. J. Energy Res., 45, 20909-20920 (2021). https://doi.org/10.1002/er.7146
- S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, and J. Bai, Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective, Compos. Part B Eng., 246, 110232 (2022). https://doi.org/10.1016/j.compositesb.2022.110232
- Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011). https://doi.org/10.1039/c1jm10845j
- D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9, 1752-1758 (2009). https://doi.org/10.1021/nl803279t
- A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 4, 6337-6342 (2010). https://doi.org/10.1021/nn101926g
- S. M. Shinde, E. Kano, G. Kalita, M. Takeguchi, A. Hashimoto, and M. Tanemura, Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition, Carbon, 96, 448-453 (2016). https://doi.org/10.1016/j.carbon.2015.09.086
- M. Son, S.-S. Chee, S.-Y. Kim, W. Lee, Y. H. Kim, B.-Y. Oh, J. Y. Hwang, B. H. Lee, and M.- H. Ham, High-quality nitrogen-doped graphene films synthesized from pyridine via two-step chemical vapor deposition, Carbon, 159, 579-585 (2020). https://doi.org/10.1016/j.carbon.2019.12.095
- J. Xu, G. Dong, C. Jin, M. Huang, and L. Guan, Sulfur and nitrogen Co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction, ChemSusChem, 6, 493-499 (2013). https://doi.org/10.1002/cssc.201200564
- F. Hassani, H. Tavakol, F. Keshavarzipour, and A. Javaheri, A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition, RSC Adv., 6, 27158-27163 (2016). https://doi.org/10.1039/C6RA02109C
- J. Zhou, Z. Wang, Y. Chen, J. Liu, B. Zheng, W. Zhang, and Y. Li, Growth and properties of largearea sulfur-doped graphene films, J. Mater. Chem. C, 5, 7944-7949 (2017). https://doi.org/10.1039/C7TC00447H
- L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Sorr, L. Balicas, F. Liu, and P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater., 9, 430-435 (2010). https://doi.org/10.1038/nmat2711
- T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New J. Chem., 36, 1385-1391 (2012). https://doi.org/10.1039/c2nj40068e
- Z. Zhai, H. Shen, J. Chen, X. Li, and Y. Li, Metal-free synthesis of boron-doped graphene glass by hot-filament chemical vapor deposition for wave energy harvesting, ACS Appl. Mater. Interfaces, 12(2), 2805-2815 (2020). https://doi.org/10.1021/acsami.9b17546
- H. Kim, O. Renault, A. Tyurnina, J.-P. Simonato, D. Rouchon, and D. Mariolle, Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption, Appl. Phys. Lett., 105, 011605 (2014). https://doi.org/10.1063/1.4889747
- Z.-S. Wu, W. Ren, L. Xu, F. Li, and H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano, 5, 5463-5471 (2011). https://doi.org/10.1021/nn2006249
- G. H. Jun, S. H. Jin, B. Lee, B. H. Kim, W.-S. Chae, S. H. Hong, and S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulkheterojunction organic solar cells, Energy Environ. Sci., 6, 3000-3006 (2013). https://doi.org/10.1039/c3ee40963e
- Z.-H. Sheng, L. Shao, J.-J. Cen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano, 5, 4350-4358 (2011). https://doi.org/10.1021/nn103584t
- X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science, 324, 768-771 (2009). https://doi.org/10.1126/science.1170335
- S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Mullen, Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions, Adv. Funct. Mater., 22, 3634-3640 (2012). https://doi.org/10.1002/adfm.201200186
- H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi, Nitrogendoped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett., 11, 2472-2477 (2011). https://doi.org/10.1021/nl2009058
- Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, Nitrogen-doped graphene and its electrochemical applications, J. Mater. Chem., 20, 7491-7496 (2010). https://doi.org/10.1039/c0jm00782j
- Y. Wang, F. Yu, M. Zhu, C. Ma, D. Zhao, C. Wang, A. Zhou, B. Dai, J. Ji, and X. Guo, Ndoping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction, J. Mater. Chem. A, 6, 2011-2017 (2018). https://doi.org/10.1039/C7TA08607E
- S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, and L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors, Chem. Commun., 52, 10988-10991 (2016). https://doi.org/10.1039/C6CC04052G
- V. K. Abdelkader-Fernandez, M. Domingo-Garcia, F. J. Lopez-Garzon, D. M. Fernandes, C. Freire, M. D. L. Torre, M. Melguizo, M. L. Godino-Salido, and M. Perez-Mendoza, Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma, Carbon, 144, 269-279 (2019). https://doi.org/10.1016/j.carbon.2018.12.045
- J. Guo, W. Wang, Y. Li, J. Liang, Q. Zhu, J. Li, and X. Wang, Room-temperature synthesis of waterdispersible sulfur-doped reduced graphene oxide without stabilizers, RSC Adv., 10, 26460-26466 (2020). https://doi.org/10.1039/D0RA04838K
- D. W. Chang, H.-J. Choi, and J.-B. Baek, Wetchemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A, 3, 7659-7665 (2015). https://doi.org/10.1039/C4TA07035F
- P. Wu, Z. Cai, Y. Gao, H. Zhang, and C. Cai, Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chem. Commun., 47, 11327-11329 (2011). https://doi.org/10.1039/c1cc14419g
- L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv., 2, 4498-4506 (2012). https://doi.org/10.1039/c2ra01367c
- Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, and X. Feng, Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction, Carbon, 62, 296-301 (2013). https://doi.org/10.1016/j.carbon.2013.05.067
- N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon, 48(1), 255-259 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
- Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, and Z. Zhang, Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption, Carbon, 148, 204-213 (2019). https://doi.org/10.1016/j.carbon.2019.03.034
- L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Adv. Mater., 21(46), 4726-4730 (2009).
- T. V. Pham, J.-G. Kim, J. Y. Jung, J. H. Kim, H. Cho, T. H. Seo, H. Lee, N. D. Kim, and M. J. Kim, High areal capacitance of N-doped graphene synthesized by arc discharge, Adv. Funct. Mater., 29(48), 1905511 (2019). https://doi.org/10.1002/adfm.201905511
- C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, and C. Zhang, Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode, J. Power Sources, 342, 157-164 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.110
- I.-Y. Jeon, S. Zhang, L. Zhang, H.-J. Choi, J.-M. Seo, Z. Xia, L. Dai, and J.-B. Baek, Edgeselectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect, Adv. Mater., 25(42), 6138-6145 (2013). https://doi.org/10.1002/adma.201302753
- H. N. Tien and S. H. Hur, Synthesis of highly durable sulfur doped graphite nanoplatelet electrocatalyst by a fast and simple wet ball milling process, Mater. Lett., 161, 399-403 (2015). https://doi.org/10.1016/j.matlet.2015.08.139
- J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S. X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, and L. Dai, Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries, ACS Nano, 8, 10920-10930 (2014). https://doi.org/10.1021/nn5047585
- J. Xu, I.-Y. Jeon, J.-M. Seo, S. Dou, L. Dai, and J.-B. Baek, Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries, Adv. Mater., 26(43), 7317-7323 (2014). https://doi.org/10.1002/adma.201402987
- X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S. Wang, L. Huang, J. Qiu, and Z. Lin, Scrutinizing defects and defect density of selenium-doped graphene for high-efficiency triiodide reduction in dye-sensitized solar cells, Angew. Chem., 130, 4772-4776 (2018). https://doi.org/10.1002/ange.201801337
- J. Ma, Y. Yuan, S. Wu, J. Y. Lee, and B. Kang, γ-Graphyne nanotubes as promising lithium-ion battery anodes, Appl. Surf. Sci., 531, 147343 (2020). https://doi.org/10.1016/j.apsusc.2020.147343
- Q. Zhang, C. Tang, W. Zhu, and C. Cheng, Strainenhanced Li storage and diffusion on the graphyne as the anode material in the Li-ion battery, J. Phys. Chem. C, 122(40), 22838-22848 (2018). https://doi.org/10.1021/acs.jpcc.8b05272
- B. Wu, X. Jia, Y. Wang, J. Hu,E. Gao, Z. Liu, Superflexible C68-graphyne as a promising anode material for lithium-ion batteries, J. Mater. Chem A, 7, 17357-17365 (2019). https://doi.org/10.1039/C9TA05955E
- X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y.-M. Kim, E. Yun, E. H. Baek, D. H. Ryu, and H. Lee, Constructing two-dimensional holey graphyne with unusual annulative π-extension, Matter, 5(7), 2306-2318 (2022) https://doi.org/10.1016/j.matt.2022.04.033