• 제목/요약/키워드: Polymer electrolyte membrane water splitting

검색결과 4건 처리시간 0.023초

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구 (A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts)

  • 심규성;김연순;김종원;한상도
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

고분자 전해질막 수전해의 산화 전극용 귀금속 촉매의 연구 동향 (Research Trend on Precious Metal-Based Catalysts for the Anode in Polymer Electrolyte Membrane Water Splitting)

  • 부종찬;정원석;임다빈;심유진;조현석
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.154-161
    • /
    • 2022
  • 전세계의 기후 온난화로 인해 탄소 중립 사회의 중요성이 대두되고 있다. 이를 위해 화석연료를 대체할 새로운 에너지 자원으로 수소에 대한 관심이 커지고 있다. 친환경적이며 풍부하게 존재하는 물의 전기분해를 통한 수소 생산은 매우 중요한 분야이다. 하지만 전기분해의 산소 발생 반응의 경우 매우 높은 과전압과 고가의 귀금속 촉매의 사용이 상용화에 걸림돌로 작용하고 있다. 이에 본 총설에서 최근 5년동안 발표된 고분자 전해질막 수전해 시스템의 산소 발생 반응에 쓰이는 귀금속 촉매의 연구 동향에 대해 요약 및 정리하였다. 가장 널리 사용되는 귀금속 촉매로는 Ir과 Ru 기반의 촉매들이다. 이들은 높은 안정성과 성능 때문에 수전해 촉매로 연구되었다. 하지만 높은 가격으로 인해 성능 향상이 우선 과제이며 이를 위해 지지체와의 상호작용, 합금 촉매, 다양한 후처리 공정 등을 적용하고 있다. 본 총설은 귀금속 촉매의 산소 발생 반응에 대한 활성과 내구성을 높이는 전략 수립에 도움이 될 것으로 예상한다.

PEEK/HPA를 이용한 수전해용 저온형 고체고분자 전해질막의 제조 (Preparation of Polyether ether ketone[PEEK]/Heteropolyacid [HPA] Blends Membrane for Hydrogen production via Electrodialysis)

  • 이혁재;정윤교;장인영;황갑진;배기광;심규성;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-48
    • /
    • 2005
  • Until recently, only perfluorinated ionomer membrane such as Nation and Aciflex practically could be successfully used in water splitting. However, these membrane are limited by high cost and loss of membrane performance such as proton conductivity at elevated temperature above 80$^{\circ}C$. The sulfonated aromatic polymers such as PEEK and PSf, polyimides, and polybenzimidazoles are expected to have lower production cost as well as satisfactory chemical and electrochemical properties. HPAs and sulfonated polymers could have a significant influence on water electrolysis performance at elevated temperatures above 80$^{\circ}C$, but these phenomena have received relatively little attention until now. Therefore, it would be desirable to investigate the interrelation between the HPA and sulfonated polymer, such as SPEEK. The SPEEK membrane were prepared by the sulfonation of PEEK, and HPA was blended with SPEEK to increase the mechanical strength and electrochemical characteristics. As a results, electrochemical characteristics such as proton conductivity and ion exchange capacity were improved with the addion of 0.5 g HPA. And the properties of polymer electrolyte, SPEEK/HPA were better than Nation membrane at elevated temperature above 80$^{\circ}C$.