DOI QR코드

DOI QR Code

Evaluation of Deformation Capacity of Various Steel Springs Subjected to Tensile Loading or Uniaxial Cyclic Loading

인장하중 및 반복하중을 받는 강재 스프링의 변형 성능 평가

  • 권희용 (경기대학교 건축공학과) ;
  • 황승현 (한국건설기술연구원 구조연구본부) ;
  • 양근혁 (경기대학교 스마트시티공학부) ;
  • 김상희 (경기대학교 스마트시티공학부) ;
  • 최용수 (포엠 주식회사)
  • Received : 2022.03.28
  • Accepted : 2022.07.13
  • Published : 2022.08.30

Abstract

In this study, to evaluate the possibility of using a steel spring as a displacement-dependent damping device, tensile loading and cyclic loading tests were performed. The main experimental variables were the type of steel (SAE9254 and SS275), the spring constant (700 N/mm, 1,000 N/mm, and 1,400 N/mm), and the presence or absence of heat treatment for SAE9254. As a result of the tensile test, the ratios of the measured spring constant to the design spring constant of the steel springs made with SAE9254 ranged from 1.08 to 1.13, while the ratios of the design spring constant and the measured spring constant of the steel springs made with SS275 ranged from 0.86 to 0.97. After yielding, the slope values of the load-displacement curve of the SAE9254 with/without heat treatment were about 240~251 N/mm and 92 N/mm, respectively, but the slope values of the load-displacement response of SS275 were almost zero. According to the uniaxial cyclic loading test results, all specimens were satisfied with three conditions for a displacement-dependent damping device in KDS 41 17 00 (2019): the maximum force and minimum force at zero displacement, the maximum force and minimum force at the maximum displacement, and the energy dissipation capacity. In addition, the equivalent damping ratios of steel springs made with SAE9254(non-heat treatment) and SS275 were approximately 2.8 times and 1.9 times greater, respectively, than that of steel springs made with SAE9254.

이 연구에서는 강재 스프링을 감쇠 장치로써 사용 가능성을 평가하기 위해서, 강재 스프링의 인장 및 반복하중 실험을 수행하였다. 주요 실험변수는 강재의 종류(SAE9254 및 SS275), 스프링상수(700 N/mm, 1,000 N/mm 및 1,400 N/mm) 및 SAE9254의 열처리 유·무이다. 인장 실험 결과, SAE9254로 제작된 강재 스프링의 설계 스프링상수와 측정 스프링상수의 비는 1.08 ~ 1.13이며, SS275로 제작된 강재 스프링의 설계 스프링상수와 측정 스프링상수의 비는 0.86 ~ 0.97로 측정되었다. 항복 이후 열처리 유·무에 따른 SAE9254로 제작된 스프링의 하중-변위 관계 기울기는 약 240 ~ 251 kN/mm 및 92 N/mm 이었으며, SS275로 제작된 스프링의 하중-변위 관계 기울기는 거의 0이었다. 반복하중 실험 결과에서 모든 실험체는 KDS 41 17 00 (2019)에서 요구하는 변위 의존형 감쇠 장치의 적합 조건인 변위 원점에서의 하중 조건, 최대변위에서 하중 조건 그리고 에너지 소산 능력 조건을 모두 만족하였다. 그리고 열처리 안 된 SAE9254 및 SS275로 제작된 강재 스프링의 등가 감쇠비는 열처리 된 SAE9254로 제작된 스프링에 비해 각각 약 2.8배 및 1.9배 높은 수준이었다.

Keywords

Acknowledgement

이 연구는 국토부의 재원으로 국토교통과학기술진흥원(22TBIP-C155839-03) 지원에 의하여 수행되었음.

References

  1. ASTM A29 (2020), Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought, ASTM International, Philadelphia, USA.
  2. ASTM A36 (2019), Standard Specification for Carbon Structural Steel, ASTM International, Philadelphia, USA.
  3. Choi, K. S., Lee, H. J., Kim, M. S., You, Y. C. (2018), An Experimental Study on Performance Evaluation of Hysteretic Steel Slit Damper, Journal of the Architectural Institute of Korea Structure & Construction, 34(1), 33-39. (in Korean)
  4. Filiatrault, A., Tremblay, R., Kar, R. (2000), Performance Evaluation of Friction Spring Seismic Damper, Journal of Structural Engineering, 126(4), 491-499. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(491)
  5. Heur, M. W., Chun, Y. S., Hwang, J. S., Lee K. S. (2015), Seismic Performance of Evaluation of R/C Frame Apartment Strenghthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(1), 23-34. (in Korean) https://doi.org/10.11112/JKSMI.2015.19.1.023
  6. Hwang, S. H., Yang, K. H., Kim, S. H. (2021(a)), Evaluation of Seismic Performance of Masonry Walls Strengthened with Unbonded Steel-Bar Truss Systems, Journal of the Korea Concrete Institute, 33(2), 117-124. (in Korean) https://doi.org/10.4334/JKCI.2021.33.2.117
  7. Hwang, S. H., Yang, K. H., Kim, S. H. (2021(b)), In-Plane and Out-of-plane Seismic performances of Masonry Walls Strengthened with Steel-Bar Truss Systems, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(1), 16-24. (in Korean) https://doi.org/10.11112/JKSMI.2021.25.1.16
  8. Kamal, M., Rahman, M. M. (2014), Finite Element-Based Fatigue Behaviour of Springs in Automobile Suspension, International Journal of Automative and Mechanical Engineering, 10, 1910-1919.
  9. KDS 41 17 00 (2019), Seismic Building Design Code and Commentary, Korea Construction Standards Center, Kyonggi-do, Korea.
  10. Kim, D. H. (1995), Current Status of Development of Seismic Isolation Technology and Seismic Vibration Technology for Structures in Consideration of Earthquakes, Journal of the Korean Society for Noise and Vibration Engineering, 5(1), 11-20. (in Korean)
  11. KS B 0802 (2018), Method of Tensile Test for Metallic Materials, Korea Agency for Technology and Standard, Seoul, Korea.
  12. KS B 2400 (2007), Helical Compression and Extension Springs - Requirements for Design, Korea Agency for Technology and Standard, Seoul, Korea.
  13. KS B 2402 (2009), Hot Formed Helical Springs, Korea Agency for Technology and Standard, Seoul, Korea.
  14. Lee, B. K., Kim, S. G., Jung, H. C., Jung, J. S., Lee, G. S. (2016), Steel-Spring Damper for Strengthening R/C Buildings and Considering Building Exterior, Journal of the Korea Concrete Institute, 28(2), 57-58. (in Korean)
  15. Lee, M. J. (1995), Active Vibration Control for Architectural Structure, Review of Architecture and Building Science, 39(8), 51-56. (in Korean)
  16. Mun, J.H., Im, C. R., Wang, H.R., Yang, K.H. (2021), Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(6), 226-234. (in Korean) https://doi.org/10.11112/JKSMI.2021.25.6.226
  17. Park, B.T., Lee, J. H. (2020), A Study on Hysteresis Characteristics and Analysis Model of Hybrid Damping Device -Hybrid Damping Device Consisting of Steel Slit and Rotational Friction Damping Device-, Journal of the Architectural Institute of Korea, 40(2), 512-515. (in Korean)
  18. Park, J. H., Lee, K. H. (2011), Experimental Study of Steel Dampers for Seismic Retrofit, Journal of the Architectural Institute of Korea, 31(2), 233-234. (in Korean)
  19. Suzuki, T., Kozawa, Shuzi., Yoshioka. T., Kubota, M., Miyamoto, H., Aono, M., Low-alloyed High-strength Suspension Spring Steel, Nippon Steel Technical Report, 122, 123-128.
  20. Wang, W., Fang, C., Zhang, A., Liu, X. (2019), Manufacturing and Performance of a Novel Self-Centring with Shape Memory Alloy Ring Springs for Seismic resilience, The Journal of the International Association for Structural Control and Monitoring, 26(5), e2337.
  21. Zhao, Z., Zhang, R., Jiang, Y., Domenico, D, D., Pan, C. (2020), Displacement-Dependent Damping Inerter System for Seismic Response Control, Applied Science, 10(1), 257.